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Introduction

= Computer Specification

® Instruction Set Architecture (ISA) - the specification of a
computer's appearance to a programmer at its lowest level

® Computer Architecture - a high-level description of the hardware
implementing the computer derived from the ISA

® The architecture usually includes additional specifications such as
speed/performance, cost, and reliability

software ::lL// \i’
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hardware

Introduction

= Simple computer architecture decomposed into:
¢ Datapath: performing operations (i.e., data manipulation)
= A set of registers
= Microoperations performed on the data stored in the registers
= A control interface
¢ Control unit: controlling datapath operations
= Programmable & Non-programmable

Control Data
in iuts inputs

Status signals

Control

; Datapath
unit Control signals P

¥

Control Data
outputs outputs




Datapath Example

= Register file:
® Four parallel-load regs
¢ Two mux-based
register selectors
® Register destination
decoder
= Microoperation implementation
® Mux B for external
constant input
¢ Buses A and B with external
address and data outputs
¢ Function Unit:

= ALU and Shifter with
Mux F for output select

= Mux D for external data input

= Logic for generating status bits:
V,C,N,Z
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Datapath Example: Performing a Microoperation

Microoperation: RO — R1 + R2

= Apply 01 to A select to place
contents of R1 onto Bus A

Apply 10 to B select to place
contents of R2 onto B data and
apply 0 to MB select to place
B data on Bus B

= Apply 0010 to G select to perform
addition G =BusA+ BusB

= Apply O to MF select and 0 to MD
select to place the value of G onto
BUSD

= Apply 00 to Destination select to
enable the Load input to RO

= Apply 1 to Load Enable to force the Load
input to RO to 1 so that RO is loaded on
the clock pulse (not shown)

= The overall microoperation requires
1 clock cycle
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Datapath Example: Key Control Actions for
Microoperation Alternatives

Various microoperations:

= Perform a shift microoperation:
apply 1 to MF select

= Use a constant in a micro-operation
using Bus B: apply 1 to MB select

= Provide an address and data for a
memory or output write
microoperation — apply 0 to Load
enable to prevent register loading

= Provide an address and obtain data
for a memory or output read
microoperation — apply 1 to MD )
select e R !

= For some of the above, other control R
signals become don't cares ‘ ‘
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Arithmetic Logic Unit (ALU)

= Decompose the ALU into:

® An arithmetic circuit & A logic circuit
¢ A selector to pick between the two circuits

GCn
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Arithmetic Circuit

= Arithmetic circuit design
¢ Decompose the arithmetic circuit

= There are only four functions of B
toselectasYinG=A+Y +C,;:

into: Y C.=0 ‘
= An n-bit parallel adder °0 G=A
= A logic block that selects four °B
choices for input B to the adder —_ G=A +E
*B | G=A+B =
° 1 = —
6=As /
n
A X Arithmetic
operations
-bit
Bﬁg>n pgralllel <> G= X+ Y+ Gn
i adder
B input DLy
s — logic
s —
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4-Bit Basic Left/Right Shifter

Bs B: Bi By
Ir T ﬁIL
012M 012M 01 2M| 012M
rs ul 18 u s ul 18 U
X X X X
S 2
H H Hi Ho
= Serial Inputs: = Shift Functions:
¢ | for right shift (S4, Sp) =00 Pass B unchanged
¢ |_for left shift 01 Right shift
10 Left shift
11 Unused

Barrel Shifter

Ds D D Do

©w

D

DI—s
oz @

oz @

3210 3210 3210

w|—]

m—q
oz @

3210

S

M
U
X

Y; Y2 Yi Yo

= Arotate is a shift in which the bits shifted out are inserted into the positions
vacated

= The circuit rotates its contents left from 0 to 3 positions depending on S:
S = 00 position unchanged S = 10 rotate left by 2 positions
S = 01 rotate left by 1 positions S = 11 rotate left by 3 positions




Combinational Shifter from MUXes

Basic Building Block ? l|3 * Example 8-bit:
= Layer 1 shifts by 0, 4
sel
= Layer 2 shifts by 0, 2
D = Layer 3 shifts by 0, 1
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= Large barrel shifters can be constructed using:
¢ Layers of multiplexers
¢ 2-dimensional array circuits designed at the electronic level
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Datapath Representation

= In the register file:

® Select inputs for multiplexers
=> A address & B address

¢ Decoder input => D address
® Load enable => write

¢ Input data to the registers =>
D data

¢ Multiplexer outputs => A
data & B data

= The register file now
appears like a memory
based on clocked flip-
flops
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Definition of Function Select
(FS) Codes

H

FS(3:0) Select Select(3:0) Select(1:0) Microoperation

0000 0 0000 XX F« 1

0001 0 0001 XX F« +1

0010 0 0010 XX F«< +B

001 0 0011 XX Fe< +3+1

0100 0 0100 XX F«< +B

0101 0 0101 XX F« +B+1

0110 0 0110 XX F« -1

0111 0 0111 XX F «

1000 0 1X00 XX F«< ~3  Boolean Equations:
1001 0 1X01 XX F« v3

1010 0 1X10 XX F« @3 MF=FF,
1011 0 1X11 XX F« G =F
1100 1 XXXX 00 Fe H=F

1101 1 XXXX 01 F«< B : !

1110 1 XXXX 10 F«< B




The Control Word

= The datapath has many control
input signals, can be organized
into a control word

= To execute a microinstruction, we
apply control word values for a
clock cycle
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Control word

DA — D Address, AA — A Address
BA — B Address, MB — Mux B

FS — Function Select, MD — Mux D
RW — Register Write

RW ————|Write
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D data
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<

Data in

Control Word Encoding

DA, AA, BA mMB FS MD RW
Function Code Function Code Function Code Function Code Function Code
RO 000 Register 0 F <« 0000 Function 0 No write 0
R1 001  Constant 1 F« +1 0001 Dataln 1 Write 1
R2 010 F«< +B 0010
R3 011 F< +8B+1 0011
R4 100 F«< +38 0100
R5 101 F< +3+1 0101
R6 110 F« -1 0110
R7 111 F <« 0111

F« A3} 1000
F« v} 1001
Fe @ 1010
Fe 1011
F« 1100
F«< B 1101

F«< B

1110




Microoperations for the Datapath — Symbolic &
Binary Representation

Micro-
operation DA AA BA MB FS MD RW
R1«< 2-R3 R1 R2 R3 Regster F=A+B+1 Function Write
R4« R6 R4 — R6 Register F=sIB Function Write
R7« 7+1 R7 R7 — Register F=A+1 Function Write
Rl J+2 R1 RO — Constant F=A+B Function  Write
Data out« 3 _ R3 Regster — — No Write
R4« atain R4 — — — Data in Write
R5¢ R5 RO RO Register F=A® Function Write
Micro-
operation DA AA BA MB FS MD RwW
R1«< 2-R3 001 010 011 O 0101 0 1
R4« R6 100 XXX 110 O 1110 0 1
R7« 7+1 1M1 111 XXX 0 0001 0 1
R1«< 0+ 2 001 000 XXX 1 0010 0 1
Dataout<~ 3 XXX XXX 011 O XXXX X 0
R4« atain 100 XXX XXX X XXXX 1 1
R5« 101 000 000 O 1010 0 1
clock 2 3 4 6 7 8
Datapath DA {1 (7 [1 [0 [4 |5 —
Simulation = & — —
BA 3 o I3 Jo —
Fs 5 [14 [1 2 0 [10 —
Constant_in X 2 [x
MB | 1 I —
Address_out (2 [7 [0 —
Data_out- (3 [0 2 I3 o —
Data_in {18} (18 —
MD | | —
RW | |
reg0 0
regl 1 [255 [2
reg2 2
reg3 3
regd 4 [12 [18
reg5 5 [0
regé 6
reg7 7 I8
Status_bits (2 o 1 [x
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Instruction Set Architecture (ISA) for Simple
Computer (SC)

= Instructions are stored in RAM or ROM as a program, the addresses
for instructions are provided by a program counter (PC)
® Count up or load a new address
® The PC and associated control logic are part of the Control Unit

= A typical instruction specifies:
® Operands to use
® Operation to be performed
® Where to place the result, or which instruction to execute next

= Executing an instruction
® Activate the necessary sequence of operations specified by the
instruction
® Be controlled by the control unit and performed in:
= Datapath
= Control unit
= External hardware such as memory or input/output




ISA Examples

RISC (Reduced Instruction Set Computer)

¢ Digital Alpha
® Sun Sparc

* MIPS RX000
® IBM PowerPC
* HP PA/RISC

CISC (Complex Instruction Set Computer)

® Intel x86
® Motorola 68000
® DEC VAX

VLIW (Very Large Instruction Word)

® Intel Itanium

ISA: Storage Resources

"Harvard architecture®:

separate instruction and
data memories

Permit use of

single clock cycle per
instruction
implementation

Due to use of "cache" in
modern computer
architectures, it is a fairly
realistic model

Instruction
memory

215x 16

Program counter

(PO)

Data
memory

215x16

Register file
8x16
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ISA: Instruction Formats

= The three formats are: Register, Immediate, and Jump/Branch

15 9 8 65 3

2 0
Opcode rogistor (D) _ister A (SA)| _ister B (35)

(a) Register
15 9 8 65 32 0
Opcode rogistor (DR] _istor A (SA]] Operand (OP

(b) Immediate
15 9 8 65 32 0
A 0] SRR e

(c) Jump and Branch

= All formats contain an Opcode field in bits 9 through 15.
® The Opcode specifies the operation to be performed

ISA: Instruction Format - Register

15 9 8 65 32 0
Destination Source reg{ Source reg-
Opcode register (DR) ister A (SA)| ister B (SB)

(a) Register

= This format supports:
°*R1<—~R2+RS3
®* R1«slR2

= Three 3-bit register fields:

® DR - destination register (R1 in the examples)
® SA - the A source register (R2 in the first example)
® SB - the B source register (R3 in the first example and R2 in the

second example)

= Why is R2 in the second example SB instead of SA?

13



ISA: Instruction Format - Immediate

15 9 8 65 32 0
Destination Source reg-
Opcode register (DR)| ister A (SA) | OPerand (OP)

(b) Immediate

= This format supports:
°*R1<—R2+3
= The B Source Register field is replaced by an Operand field OP
specifying a constant. (3-bit constant, values from 0 to 7)
= The constant:
® Zero-fill (on the left of) the operand to form 16-bit constant
® 16-bit representation for values 0 through 7

ISA: Instruction Format - Jump & Branch

15 9 8 65 32 0

Address (AD)|  Source reg-| Address (AD)
Opcode (Left) ister A (SA) (Right)

(¢) Jump and Branch

= This instruction supports changes in the sequence of instruction
execution by adding an extended, 6-bit, signed 2’s-complement
address offset to the PC value

= The SA field: permits jumps and branches on N or Z based on
the contents of Source register A

= The Address (AD) field (6-bit) replaces the DR and SB fields
¢ Example: Suppose that a jump for the Opcode and the PC contains
45 (0...0101101) and AD contains -12 (110100). Then the new PC

value will be:
0...0101101 + (1...110100) = 0...0100001 (i.e., 45 + (-12) = 33)
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ISA: Instruction Specifications

Status
Instruction Opcode  Mnemonic Format Description Bits
Move A 0000000 MOVA RD,RA R[DR] <~ R[SA] N, Z
Increment 0000001 INC RD,RA R[DR] <« R[SA] +1 N, Z
Add 0000010 ADD RD,RA,RB R[DR] « R[SA] +R[SB] N, Z
Subtract 0000101 SUB RD,RA,RB R[DR] <« R[SA] —R[SB] N, Z
Decrement 0000110 DEC RD,RA R[DR] <« R[SA] -1 N,Z
AND 0001000 AND RD,RA,RB R[DR] <~ R[SA] AR[SB] N,Z
OR 0001001 OR RD,RA,RB R[DR] <« R[SA] v R[SB] N, Z
Exclusive OR 0001010 XOR RD,RA,RB R[DR] <« R[SA] ® R[SB] N Z
NOT 0001011 NOT RD,RA R[DR] <« R[SA] N, Z
Move B 0001100 MOVB RD,RB R[DR] <« R[SB]
Shift Right 0001101 SHR RD,RB R[DR] < sr R[SB]
Shift Left 0001110 SHL RD,RB R[DR] < sIR[SB]
Load Immediate 1001100 LDI RD, OP R[DR] <« zf OP
Add Immediate 1000010 ADI RD,RA,OP R[DR] <« R[SA] + zf OP
Load 0010000 LD RD,RA R[DR] < M[R[SA]]
Store 0100000 ST RA,RB MIR[SA]]« R[SB]
Branch on Zero 1100000 BRZ RA,AD if (R[SA]=0) PC <~ PC +se AD

Branch on Negative 1100001 BRN

Jump

1110000 JMP

RA,AD  if(R[SA]< 0)PC « PC +se AD
RA PC < R[SA]

ISA: Example Instructions and Data in Memory

Memory Representation of Instruction and Data

Decimal Decimal
Address Memory Contents Opcode Other Field Operation
25 0000101 001 010 011 5 (Subtract) DR:1, SA:2, SB:3 R1 <« R2-R3
35 0100000 000 100 101 32 (Store ) SA4, SB:5 M[ R4] « R5
45 1000010 010 111 011 66 (Add DR: 2,SA:7,0P:3 R2<« R7 +3
Im mediate)
55 1100000 101 110 100 96 (Branch AD: 44, SA:6 IfR6= 0,
on Zero) PC < PC - 20
70 0000000 001100 000 Data = 192. After execution of instructionin 35,

Data = 80.
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R(8:6) [| IR(2:0)
V~>
C—>{ Branc}
N~ Contro
Z+
K
: Rt
Single-Cycle < -
Hardwired ‘ D= TR
Control: : TR
IR(Z:O)EEl .Constant l
H m
Instruction decoder )
| |‘ |-&1[ 0 MB
iAddress out
Bus A Bus B | "
] NiW
DBAMFMRMP J B I 3 I
AAABEDWWL B C Fs—] A B | | [Data_in Addregs
CONTROL P ]
v Function Daia
! C~— A : memory
= Based on the ISA defined, ; e unit ‘
design a computer architecture = )
to support the ISA
= The architecture is to fetch and
execute each instruction in a
single clock cycle




The Control Unit

= Datapath: the Data Memory has been attached to the Address
Out, Data Out, and Data In lines of the Datapath.

= Control Unit:

® The MW input to the Data Memory is the Memory Write signal from
the Control Unit.

® The Instruction Memory address input is provided by the PC and its
instruction output feeds the Instruction Decoder.

¢ Zero-filled IR(2:0) becomes Constant In
¢ Extended IR(8:6) || IR(2:0) and Bus A are address inputs to the PC.
® The PC is controlled by Branch Control logic

Program Counter (PC) Function

= PC function is based on instruction specifications involving jumps
and branches:

Branch on Zero BRZ if (R[ISA] =0) PC <~ PC + seAD
Branch on Negative BRN if (R[SA] <0) PC < PC + seAD
Jump JMP PC <~ R[SA]

® The first two transfers require addition to the PC of:
= Address Offset = Extended IR(8:6) || IR(2:0)

® The third transfer requires that the PC be loaded with:
= Jump Address = Bus A = R[SA]

= |n addition to the above register transfers, the PC must implement
the counting function:
®* PC« PC+1

17



PC Function (Contd.)

= Branch Control determines the PC transfers based on five
inputs:
® N,Z — negative and zero status bits
® PL — load enable for the PC
¢ JB — Jump/Branch select: If JB = 1, Jump, else Branch

® BC — Branch Condition select: If BC = 1, branch for N = 1, else
branch forZ = 1.

PL JB BC | PC Operation
Count Up

Jump

Branch on Negative (else Count Up)

alalalo
o|=| X|X

X
1
0
0 Branch on Zero (else Count Up)

Instruction Decoder

= Converts the instruction into the signals necessary to
control the computer during the single cycle execution,
combinational
® Inputs: the 16-bit Instruction
¢ QOutputs: control signals
= DA, AA, and BA: Register file addresses (IR (8:0))
¢ simply pass-through signals: DA = DR, AA = SA, and BA = SB
= FS: Function Unit Select
= MB and MD: Multiplexer Select Controls
= RW and MW: Register file and Data Memory Write Controls
= PL, JB, and BC: PC Controls
= Observe that for other than branches and jumps, FS =
IR(12:9)
® The other control signals should depend as much as possible on
IR(15:13)

18



Instruction Decoder (Contd.)

Truth Table for Instruction Decoder Logic

Instruction Bits Control Word Bits

Instruction Function Type 15 14 13 9 MB MD RW MW PL JB BC

1. Function unit operationsusing 0 0 0 X 0 0 1 0 0 X X
registers

2. Memory read 0 (1} 1 X 0 1 1 0 0 X X
3. Memory write 0 1 0 X 0 X 0 1 0 X X

4. Function unit operations using 1 0 0 X 1 01 0 0 X X
register and constant

5. Conditional branch on zero (Z) 1 1 0 0 X X 0 o0 1 0 o
6. Conditional branch on negative 1 1 0 1 X X 0 o0 1 o0 1
N

(7. {Tnconditional Jump 1 1 1 X X X o0 0 1 1 X

Instruction Decoder (Contd.)

= Instruction types are based on the control blocks and the
seven control signals to be generated (MB, MD, RW,
MW, PL, JB, BC):

¢ Datapath and Memory Control (types 1-4)
= Mux B
= Memory and Mux D

® PC Control (types 5-7)
= Bit15=Bit14=1=> PL
= Bit 13 => JB.
= Bit 9 was use as BC which contradicts FS = 0000 needed for

branches. To force FS(0) to 0 for branches, Bit 9 into FS(0) is
disabled by PL.
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Instruction Decoder (Contd.)

= The end result by use of the types, careful assignment of codes,

and use of don't cares, yields very simple logic:
L

. Opcode DR SA SB
= This completes the 514131211 1 86 53 20
C

design of most of the |
essential parts of
the single-cycle

simple computer

1917 | 1644 | 1311 | 10 9-6 5143|210

DA AA BA |MB FS |MD RWMWPL| JB| BC

Control word

Example Instruction Execution

Six Instructionsfor the Sirgle-Cycle Computer

Operation Symbolic

code Name Format Description Func tion MB MD RW MW PL JB BC

1000 010 ADI Imme diate A dd immediate RIDR] « R[SA] +2f/(2:0) 1 0 1 ©0 0 0 0
operand

0010 000 LD Register Load mem ory RIDR] <M [R[sA]] o1 1 0 0 1 0
contentin to
register

0100 000 ST Register Storere gister M[R[SA]] « R[SB] o 1 0 1 0 0 0
conten tin
memory

0001110 SL Register Shift left R[DR] « sIR[SB] o 0o 1 0 0 1 0

0001011 NOT Register Comple ment R [DR] « R[sA] 0 0 1 0o 0 0 1
reg ister

1100 000 EBRZ Jump/Branch If R[SA] =0,branch If R[SA]=0, 1 0 0 0 1 o 0

toPC +se AD PC « PC + se AD
If R[SA]=0, PC « PC + 1

= Decoding, control inputs and paths shown for
ADI, LD and BRZ on next 6 slides
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Decoding for ADI

514

Instruction
10 OOondg 1 OT DR SA SB

211 1 86 53 20

5 |

1947 | 1614 | 13411 | 10 9-6 5

DA AA BA |MB FS |[MD RW MW

1/0010]0

Control word

Vol Txtend!RG:6) | IR2:D)
ClBranc [ pg Control Inputs and
~IControl
z- " Paths for ADI
Tt
I]j]'{g Address
Instructio 1
000 memory RW — )
‘ Instructio| DA— Ryfl..m.
Increment AA—| A "B [« BA
PC E—
IR(2:0) Constant
| Instruction decoder = 0
MB 1
Address out
Bus 4 Bus B D ¢ (}W——> No
Nl Write
DBAMFMRMPJB
AAABSDWWLBC 0j010 Tt i AT
120 1c00rRof L6 +
- v q Data
S C~— Fun F_tlon memory
=] ufit
N~
7~—

DATAPATH
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Decoding for LD

DR SA SB

514 21&1 8|—6 53 20

Instruction
001,090 OT

1947 | 1614 | 13411 | 10 9-6 5

0(00001
DA | AA | BA [MB FS |MDRWMW

[N
(=}
;ON%
—
[—]

Control word

R(8:6) || IR2:D)

v Control Inputs and
3 Paths for LD
1 ‘

RW— B
DA— Register
AA—{ L Tlep |~ BA
PC
IR(Z'O)@ .Constant 1
Instruction decoder | |
o = MBO
\ ‘ Bus A Bus B ¢ 0—‘—’ No Write
DBAMFMRMPJB I I
AAABSDWWLBC 0[000 = Data in Adfires
0=1 1c%0ridof FS
e Vi . Data
=) Cc~—1 Function memory
=) unit
N~ D
7~ .
a in
IMD—{ W
s D

DATAPATH




Decoding for BRZ

100 0 0ln ruction
Opcm?e T DR SA SB
514 2 1& 1 8|—6 53 20

1917 | 1644 | 1311 | 10 9-6 5(14|13|2(1]|0
1

1({0000/0 0|0 0|0
DA AA BA |MB FS |MD RWMWPL| JB| BC
Control word
R(8:6) || IR(2:D)
Control Inputs and
Paths for BRZ
No Write
0 1
RW — D
DA—{ Register
AA— gﬁleg ~—BA
E@ ponstant 1
Instruction decoder m
| [&‘[l"mJ«MBI
Address out
Bus4 [BusB ¢ 0— No Write
_l_ﬂ'a&'] ]ViW
RRABSDWWLEE oo
— | A B Data in Addres|
120 0cOrRof FS
< V= . Data
S c<—{ Fuyction memory
=} it
N~ D

DATAPATH
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Single-Cycle Computer Issues

= Shortcoming of Single Cycle Design
¢ Complexity of instructions executable in a single cycle is limited

¢ Accessing both an instruction and data from a simple single
memory impossible

® A long worst case delay path limits clock frequency and the rate of
performing instructions

= Handling of Shortcomings

® The first two shortcomings can be handled by the multiple-cycle
computer (not covered in these slides)

® The third shortcoming is dealt with by using a technique
called pipelining
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Pipelining a digital system

= Key idea: break big computation into pieces

1ns

= Separate each piece with a pipeline register

S EHE

200ps | 200ps | 200ps | 200ps |  200ps
I
Pipeline
Register

Pipelining a digital system

= Why do this? Because it's faster for repeated
computations

1ns

Pipelined:
= 1 operation finishes
every 200ps

200ps 200ps 200ps 200ps 200ps

Non-pipelined:
1 operation finishes
every 1ns
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Pipelining

= Pipelining increases throughput, but not total
computation time of a task
¢ Answer available every 200ps, BUT
® A single computation still takes 1ns

= Limitations:
¢ Computations must be divisible into stage size
® Pipeline registers add overhead

Pipelining

= Pipelining transformation leads to a
reduction in the critical path, which can be
exploited to increase the clock speed or to
reduce power consumption at same speed.

= |n parallel processing, multiple outputs are
computed in parallel in a clock period.
Therefore, the effective clock speed is
increased by the level of parallelism.
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Example: 3-tap FIR digital filter

Example 1: Consider a 3-tap FIR filter: y(n)=ax(n)+bx(n-1)+cx(n-2)

x(n) X(n-1) x(n-2)

T,, : multiplica tion — time

T,: Addition —time

— The critical path (or the minimum time required for processing a new
sample) is limited by 1 multiply and 2 add times. Thus, the “sample period”
(or the “sample frequency” ) is given by:

T =2 T, + 2T,

sample
1

<
f sample T + 2 T

M A

Example: 3-tap FIR digital filter

+ The pipelined implementation: By introducing 2 additional latches in
Example 1, the critical path is reduced from Tu+2Ta to Tm+Ta.The schedule of
events for this pipelined system is shown in the following table. You can see
that, at any time, 2 consecutive outputs are computed in an interleaved manner.

Clock | Input Node 1 Node 2 Node 3 | Output
0 x(0) | ax(0)y+bx(-1) — — —
x(1) | ax(1)+bx({0) ax(D)+bx(-1) cx(-2) v(0)

1
2 x(2) ax(2)+bx(1) ax( 1 +bx(0) cx(-1) yil)
3 x(3) | ax(3pbx(2) ax(2)y+bx(1) cx(0) v(2)

x(n)
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The Laundry Analogy

= Ann, Brian, Cathy, Dave

each have one load of clothes 6666

to wash, dry, and fold

= Washer takes 30 minutes '
fe—7
= Dryer takes 30 minutes o

= “Folder” takes 30 minutes

= “Stasher” takes 30 minutes ji

to put clothes into drawers

SoQNQO XOO

If we do laundry sequentially...

6 PM 7 8 9 10 1" 12

1

2AM

| | | | | | | | | | |
30 130 130 130 130 130 130 130 130 130 130 130

ST &
z A 89 4
&

y

= Time Required: 8 hours for 4 loads

| .
130 130 130 |3o |

VA
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To Pipeline, We Overlap Tasks

6 PM 7 8 9 10 11 12 2AM
I
Time
T
a
s
k
(0]
r
d
e
r
= Time Required: 3.5 Hours for 4 Loads
To Pipeline, We Overlap Tasks
6 PM 7 8 9 10 11 12 2AM
|
| i
; 30 '30 '30 30 30 30 30 me
a . » Pipelining doesn’t help latency of
s single task, it helps throughput of
k = . entire workload
o E’ K * Pipeline rate limited by slowest
r ' o k pipeline stage
d = + Multiple tasks operating
? ° simultaneously
v E * Potential speedup = Number pipe
stages

* Unbalanced lengths of pipe stages

reduces speedup

* Time to “fill” pipeline and time to

“drain” it reduces speedup
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Overview

= Part 1 — Datapaths
¢ Introduction
¢ Datapath Example
= Arithmetic Logic Unit (ALU)
= Shifter
¢ Datapath Representation and Control Word

= Part 2 — A Simple Computer
¢ Instruction Set Architecture (ISA)
¢ Single-Cycle Hardwired Control

= Part 3 — Pipelining
¢ Single-Cycle Computer Issues
¢ Pipelining concept
® Pipelined design of Simple Computer

Abstract View of Critical Path

“ Register file and ideal memory:
+ The CLK input is a factor ONLY during write operation
+ During read operation, behave as combinational logic:
- Address valid => Output valid after “access time.”

Critical Path (Load Operation) =
PC’s Clk-to-Q +
Instruction Memory’s Access Time +

Ideal
Instruction Register File’s Access Time +
Memory ALU to Perform a 32-bit Add +
) Imm Data Memory Access Time +
) 16 Setup Time for Register File Write +
[nstruction 1 Clock Skew
Ao A, Data
Rw V = 32 Address
32 3 it Data
Registers B ] Data Memory
| ¥ I T > ‘? )
. Clk
- 4
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Pipelined critical path

= Critical path is longest path between stage
registers

Ideal
Instruction

Insgruction
Memory

Rs Rt Imim
5 ] P 16
A L
Yy . . Data

.
Rw V . Address
32 3Z2-bit Data
Registers Data . Memory
T "
Clk

Steps in Instruction Processing

Load instruction

Add R1,R2.R3

Instruction Fetch. IF Instruction Fetch, IF

Decode, D Decode, D

Read Regs, R Read Regs, R

Execute, E Execute, E

Write Reg, W Data Fetch, DF

Write Reg, W
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Un-pipelined (Non-overlapped) Implementation

= Consider loads with DF stage

Cl C2 C3 C4 C5 Co C7 C8 C9 C10
I IF DR E DF W

12 IF DR E DF W
I3

Pipelined Implementation

Cl C2 C3 C4 C5 Co C7 C8 C9 C10
I IF DR E DF W

12 IF DR E DF W

I3 IF DR E DF W

14 IF DR E DF W

I5 IF DR E DF W

I6 IF DR E DF W




5-stage Pipeline

= CPU stages
® IF: Instruction fetch
® DR: Instruction decode & Register read
¢ E: Execute
® DF: Data fetch (Memory load/store)
® W: Write Back Registers

= Another set of mnemonic names
® IF, ID, E, MEM, WB

Computer Pipelines

= Execute billions of instruction, so throughput is
what matters
= Throughput versus latency
® + Throughput increases
¢ - Latency for a single instruction increases
= May have to wait longer for single instruction to complete
= Allows much faster clock cycle

= RISC pipeline architecture features:
¢ All instructions same length
® Registers located in same place in instruction format
® Memory operands only in loads and stores
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Summary

= Concept of Datapath for implementing
computer microinstructions

= Control word provides a means of organizing
the control of the microoperations

= Concept of ISA and instruction formats and
operations of Simple Computer (SC)

= Pipelining

For Adventurers

= | have a VHDL implementation of the Single Cycle
Computer (SCC) described in this presentation. It’s
verified via simulation and actual hardware
implementation on an FPGA (Spartan-6)

= |If you are interested in studying it via simulation:
® Download and install the free Aldec-HDL simulator as
described here:
= http://dejazzer.com/ee478/labs/lab1 aldec tutorial.pdf
® Then, simulate the SCC using the VHDL source code
available for download here:
= http://dejazzer.com/ee478/labs/lab11 files.zip
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