
Introduction to C via Examples
Last update: Cristinel Ababei, January 2012

1. Objective

The objective of this material is to introduce you to several programs in C and discuss how to compile,

link, and execute on Windows or Linux. The first example is the simplest hello world example. The

second example is designed to expose you to as many C concepts as possible within the simplest

program. It assumes no prior knowledge of C. However, you must allocate significant time to read

suggested materials, but especially work on as many examples as possible.

2. Working on Windows: Example 1

To get started with learning C, I recommend using a simple and general/generic IDE with a freeC/C++

compiler. For example, Dev-C++ is a nice compiler system for windows. Download and install it on your

own computer from here:

http://www.bloodshed.net/devcpp.html

In my case, I installed it in M:\Dev-Cpp, where I created a new directory M:\Dev-Cpp\cristinel to store

all projects I will work on. Inside this new directory, I created yet one more M:\Dev-

Cpp\cristinel\project1, where I’ll store the files for the first program, which is simply the famous “hello

world” program. We’ll create a new project directory for each new program; this way we keep thing

nicely organized in individual directories.

We create a program by creating a new project in Dev-C++. So, start Dev-C++ and create a new project.

In the dialog window, select “Console Application” as the type of project and name it hello. Also, select

“C Project” and check check-mark it as default language. Then only click Ok. In the next window that

pops-up, navigate to M:\Dev-Cpp\cristinel\project1, as the location where we want this project to be

stored.

This will automatically create a simple main.c template file. Replace its content with the following

listing:

#include <stdio.h>

int main ()

{

 printf("Hello World!\n");

 return 0;

}

Then save it as hello.c. It could be very well saved as main.c (the default name) but we just want to

change its name. This first program will simply print “Hello World!” at the command prompt.

To compile this program, select Execute->Compile

Which creates the executable hello.exe in M:\Dev-Cpp\cristinel\project1

To execute our program, start a command prompt window Start->Run and type cmd. Then navigate to

the project directory M:\Dev-Cpp\cristinel\project1, where simply type hello.exe. This should execute

our program, which simply prints at the prompt “Hello World!”

http://www.bloodshed.net/devcpp.html

A few notes about this first program:

 The #include command is a preprocessor directive to load the stdio library.

 Execution starts in a function (method) called main:

 There are other signatures for main as we will see.

 Although a return type is declared, nothing needs to be returned.

 The printf method is used for screen output.

 The "newline" character \n is explicitly required.

3. Working on Linux/Unix: Example 1

If you have a Linux machine, then you can simply use the GNU compiler. You do not need to install

anything else. Use your favorite text editor to create and save the hello.c file in a new directory, say

project1.

To compile it:
$ gcc -Wall hello.c -o hello

This produces an executable called hello which can be executed as:
$ hello

or, if you don't have the current directory in your path:
$ /hello

Which should print at the prompt “Hello World!”

One can also work in Linux-like environments on Windows. For example, cygwin is a collection of tools

which provide a Linux look and feel environment for Windows. If you want, you can install cygwin and

use it for your C programming projects. There is lots of online information that describes how cygwin can

be used. Google and search for it. You can download cygwin here: http://www.cygwin.com/

4. Working on Windows: Example 2

A program can be split up into multiple files. This makes it easier to edit and understand, especially in the

case of large programs. In addition, it also allows the individual parts to be compiled independently.

In our second program, we split up the program into three files, which we create and store in a new

project directory in M:\Dev-Cpp\cristinel\project2:

main.c

my_utils.c

my_utils.h

For the purposes of this example (which will become clear when you will read the main.c source file),

also create a simple text file (using any text editor you would like, such as NotePad) called age.txt with

only one integer in one line. Store it in the same project directory project2.

The listing of main.c is:

#include <stdio.h>

#include <stdlib.h>

http://www.cygwin.com/

#include <string.h>

#include "my_utils.h"

#define NUM_TIMES_TO_PRINT 3

int main(int argc, char *argv[])

{

 // (1) declare variables;

 USER_RECORD myself;

 char temp_last_name[50];

 FILE *fp; // file pointer; used to read from pre-saved age.txt;

 // (2) ask user to type in her first name; read from standard input

 // what the user types and store up to 100 characters in member "first_name"

 // of object "myself";

 printf("Type your first name please and press Enter: \n");

 // read 100 bytes from standard input;

 fgets(myself.first_name, sizeof(myself.first_name), stdin);

 // remove the newline character from the end of the string;

 remove_newline(myself.first_name);

 // (3) ask user to type in her last name; read from standard input

 // what the user types and store what the user types in member "last_name"

 // of object "myself";

 printf("Type your last name please and press Enter: \n");

 fgets(temp_last_name, sizeof(temp_last_name), stdin);

 // remove the newline character from the end of the string;

 remove_newline(temp_last_name);

 // allocate memory to store the last name; needed because last_name

 // variable inside the USER_RECORD structure is declared as a pointer only;

 myself.last_name = malloc((strlen(temp_last_name) + 1) * sizeof(char));

 strcpy(myself.last_name, temp_last_name);

 // (4) ask user the gender;

 printf("What's your gender? Type F or M. \n");

 myself.gender = getc(stdin);

 // (5) in this example's directory we have created a text file

 // that contains only one line with an integer number; we mean for

 // this number to be the age of the user; we do this only to

 // also illustrate reading from a file;

 fp = fopen("age.txt", "r"); // you should error-check this; not done here;

 fscanf(fp, "%d", &myself.age);

 fclose(fp);

 // (5) entertain use;

 printf("--- \n");

 long i;

 for (i=0; i < NUM_TIMES_TO_PRINT; i++) {

 print_hello_message(&myself);

 }

 // (6) clean up and return;

 free(myself.last_name);

 return 0;

}

The listing of my_utils.c is:

#include <stdio.h>

#include <string.h>

#include "my_utils.h"

void print_hello_message(USER_RECORD *this_user)

{

 if (this_user->gender == 'F') {

 printf("Hello MRS. %s %s, you are %d years old! \n",

 this_user->first_name, this_user->last_name, this_user->age);

 } else if (this_user->gender == 'M') {

 printf("Hello MR. %s %s, you are %d years old! \n",

 this_user->first_name, this_user->last_name, this_user->age);

 } else {

 printf("Hello %s. No soup for you! \n", this_user->first_name);

 }

}

char *remove_newline(char *s)

{

 int len = strlen(s);

 // if there's a newline truncate the string

 if (len > 0 && s[len-1] == '\n') {

 s[len-1] = '\0';

 }

 return s;

}

The listing of my_utils.h is:

typedef struct {

 char first_name[100];

 char* last_name;

 char gender;

 int age; // in years;

} USER_RECORD;

void print_hello_message(USER_RECORD *this_user);

char *remove_newline(char *s);

The file my_utils.c contains the source of two functions, which we utilize by calling them from within the

main.c file. Our program also includes the header file my_utils.h, which contains the declaration of the

two functions defined in my_utils.c. These declarations are used to ensure that the types of the arguments

and return value match up correctly between the function calls and the function definitions.

The difference between the two forms of the include statement #include "FILE.h" and #include <FILE.h>

is that the former searches for FILE.h in the current directory before looking in the system header file

directories. The include statement #include <FILE.h> searches the system header files, but does not look

in the current directory by default.

Now, start Dev-C++ and create a new project called newhello in project2 directory. Add the above three

files to the project and compile. Do not forget to also create the age.txt file and store it in project2 before

executing the program. Start a command prompt window, then navigate to project2 and execute

newhello.exe. What do you get?

5. Working on Linux/Unix: Example 2

Create a new directory, say project2, where you should copy the three files:

main.c

my_utils.c

my_utils.h

Do not forget to also create the age.txt file and store it in project2.

To compile these source files with gcc, we use the following command:

$ gcc -Wall main.c my_utils.c -o newhello

This produces an executable called newhello which can be executed as:
$ newhello

or, if you don't have the current directory in your path:
$./newhello

6. Assignment

(Part 1)
Using Google as well as the C Programming pointers provided bellow, read the source code of the second

example and explain what each line of code does.

C Programming pointers:

[1] C Tutorial, http://www.cprogramming.com/tutorial/c-tutorial.html

[2] EE 472 Course Note Pack, Univ. of Washington, 2009,

http://abstract.cs.washington.edu/~shwetak/classes/ee472/notes/472_note_pack.pdf

[3] Teach Yourself C in 21 Days, http://kldp.org/files/c+in+21+days.pdf

[4] Jacob Navia (author of lcc-win), C Tutorial, http://www.cs.virginia.edu/~lcc-win32/C-Tutorial.pdf

[5] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Computer Press. 1989.

(very popular book, some refer to it as the bible?)

http://net.pku.edu.cn/~course/cs101/2008/resource/The_C_Programming_Language.pdf

(Part 2)

Write a new C program that reads two matrices from two different text files (matrixA.txt, matrixB.txt),

multiplies the two matrices, and write the result into a third text file (matrixC.txt).

The listing of file matrixA.txt is:
1 2 3 4

8 7 6 5

The listing of file matrixB.txt is:
1 1

1 1

1 1

1 2

http://www.cprogramming.com/tutorial/c-tutorial.html
http://abstract.cs.washington.edu/~shwetak/classes/ee472/notes/472_note_pack.pdf
http://kldp.org/files/c+in+21+days.pdf
http://www.cs.virginia.edu/~lcc-win32/C-Tutorial.pdf
http://net.pku.edu.cn/~course/cs101/2008/resource/The_C_Programming_Language.pdf

(Part 3)

Search online for simple examples C programs and verify them. Learn via examples found online or

discussed in the above C Programming pointers.

7. Others

Dev-C++ is only one example of “C compiler + IDE (integrated development environment)” that one can

use on Windows. There are many others out there. You can search for others, read online about them

(advantages, disadvantages) and select to work with whichever you feel more comfortable. Some

examples include:

--Eclipse http://www.eclipse.org/cdt/

--NetBeans http://netbeans.org/features/cpp/index.html

-- Visual C++ Express http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-

products

--DigitalMars http://www.digitalmars.com/

--DJGPP http://www.delorie.com/djgpp/

--lcc-win http://www.cs.virginia.edu/~lcc-win32/

--See many more on the list at http://www.bloodshed.net/compilers/index.html

The compiler of choice for most users of the Linux operating system is the GNU C++ Compiler (GCC),

although many others are available too. Linux is primarily a console-based environment. So GCC is a

command-line compiler rather than a point-and-click GUI.

Most Mac users recommend the G++ compiler which is part of the free Xcode package. There is also a

version of Eclipse for the Mac.

http://www.eclipse.org/cdt/
http://netbeans.org/features/cpp/index.html
http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-products
http://www.microsoft.com/visualstudio/eng/products/visual-studio-express-products
http://www.digitalmars.com/
http://www.delorie.com/djgpp/
http://www.cs.virginia.edu/~lcc-win32/
http://www.bloodshed.net/compilers/index.html

