
Lec#09 (part 4) More on Interrupts
Last update: Cristinel Ababei, Feb. 2013

1. MCB1700 Board Quick Overview

The hardware block diagram in Fig.1 [1] displays input, configuration, power system, and User I/O on the

MCB1700 board.

Figure 1 Main components of MCB1700 board

Microcontroller: NXP LPC1768

XTAL Frequency: 12 MHz

Peripherals on board: 2 × RS232 Interfaces,

2 × CAN Interfaces,

1 × Ethernet Interface,

1 × JTAG Interface,

1 × ETM Interface,

2 × Cortex Debug Interfaces,

1 × LCD Display,

1 × USB Device/Host/OTG Interface,

1 × Analog Output (connected to speaker by default)

1 × Analog Input (connected to potentiometer by default)

2. LPC17xx MCU Overview

The LPC1700 series of low power cost-effective Cortex-M3 microcontrollers feature best-in-class

peripheral support such as Ethernet, USB 2.0 Host/OTG/Device, and CAN 2.0B.

Operating at speeds up to 120 MHz, they have up to 512 KB of FLASH, up to 64 KB of SRAM, 12-bit

A/D and 10-bit D/A converters as well as an internal RC oscillator.

Block diagram shown in Fig.2 [2].

Figure 2 LPC17xx block diagram.

Simplified block diagrams of LPC1768 MCU are shown in Fig.3,4 [3].

Figure 3 Simplified block diagram of LPC1768 MCU.

Figure 4 LPC1768 block diagram, CPU, and buses.

3. Exception and Interrupts: Nested Vectored Interrupt Controller (NVIC)

--Nested Vectored Interrupt Controller that is an integral part of the ARM Cortex-M3

--Tightly coupled interrupt controller provides low interrupt latency

--Controls system exceptions and peripheral interrupts

--In the LPC17xx, the NVIC supports 35 vectored interrupts

--32 programmable interrupt priority levels, with hardware priority level masking

--Relocatable vector table

--Non-Maskable Interrupt

--Software interrupt generation

Table 50 from User Manual [3] lists the interrupt sources for each peripheral function. Each peripheral

device may have one or more interrupt lines to the Vectored Interrupt Controller. Each line may represent

more than one interrupt source, as noted.

Exception numbers relate to where entries are stored in the exception vector table. Interrupt numbers are

used in some other contexts, such as software interrupts.

As we can see, the LPC1768 microprocessor can have many sources of interrupts. Selected GPIO pins

can also be set to generate interrupts.

4. Input/Output Ports

Detailed information on this topic can be found in chapters 7,8, and 9 of the LPC17xx user manual [3].

a) Pin function:

The LPC1768 microprocessor on the MCB1700 board has 100 pins. Fig.5 [4] shows the functionality of

most of these pins. Most pins can have more than one function. For example, pin number 73, named as

P2.2, can take four different roles as indicated by P2.2/PWM1.3/CTS1/TRACEDATA3.

Figure 5 Pins of LPC178.

Many pins of LPC1768 can have up to four different functionalities. For each pin there is a two-bit field

in a register named PINSELx which controls the functionality of the pin. Table D.1 shows how the two

bits should be set to define the functionality of a pin. For more information refer to tables 79-86 of the

LPC17xx user manual.

Many times we’ll define the pins we’ll work with as GPIO (general purpose input output) – the default

functionality. We saw an example of using a pin as a GPIO in the Blinky examples of lab#1.

There are ten PINSEL (pin select) registers. Two of them, PINSEL3 and PINSEL4, are used for pins

connected to LEDs. The PINSEL3 (address 0x4002 C00C) controls P1[31:16] pins and the PINSEL4

(0x4002 C010) controls P2[15:0] pins. Table D.2 shows pin function select for PINSEL3 (partial), and

Table D.3 shows pin function select for PINSEL4 (partial).

b) Pin mode:

Each GPIO pin can be either input or output and can be configured to use a pull-up resistor, a pull-down

resistor, or no resistor at all. “Fig.35” below, taken from NXP’s LPC17xx datasheet, shows the general

structure for a GPIO pin.

For configuration as output, the pull-up “resistor” can generate a “high” (or logic 1) state, while the pull-

down “resistor” can generate a “low” (or logic 0) state.

There is a two bit field in the register named PINMODEx that determines the GPIO pin configuration.

The PINMODE registers control the input mode of all ports. This includes the use of the on-chip pull-

up/pull-down resistor feature and a special open-drain operating mode. The on-chip pull-up/pull-down

resistor can be selected for every port pin regardless of the function on this pin with the exception of the

I2C pins for the I2C0 interface and the USB pins. The next table shows how the configuration is done.

For more information, refer to tables 87-93 of the LPC17xx User manual.

c) Using the GPIO:

The following table lists the registers associated with GPIOs. When using a given pin as I/O we write and

read from these registers’ individual bits.

Selected GPIO pins can also be set to generate interrupts. The push button INT0 is connected to pin P2.10

of the LPC1768 microprocessor. This pin can be a source of external interrupts to the MCU. The table

below shows different functionalities that can be assigned to P2.10 pin.

If you plan to use P2.10 as GPIO, then you should also enable this source of interrupt as described in

section 9.5.6 of the LPC17xx user manual. Note that you can set the P2.10 pin to be sensitive to either the

rising edge or the falling edge. More information on clearing the interrupt pending bit can be found in

table 123 in section 9.5.6.1, page 139 of the user manual.

5. Polling vs. Interrupts

“Polling is like picking up your phone every few seconds to see if you have a call.”

Polling the device usually means reading its status register every so often until the device's status changes

to indicate that it has completed some request. It takes CPU time even when no requests are pending.

However, it can be efficient if events arrive rapidly.

Interrupts are an alternative to polling. Each device is given a wire (interrupt line) that it can use to signal

the processor. When an interrupt is signaled, the processor executes a routine called an interrupt handler

to deal with the interrupt. This approach has no overhead when no requests are pending.

A nonmaskable interrupt (NMI) is an interrupt that cannot be ignored by standard interrupt masking

techniques in the system. It is typically used to signal attention for non-recoverable hardware errors.

On receipt of an NMI request, immediate execution of the NMI handler is guaranteed unless the system is

completely locked up. NMI is very important for many safety-critical applications.

6. References

[1] Block diagram of MCB1700 board;

http://www.keil.com/support/man/docs/mcb1700/mcb1700_to_block.htm

[2] Cortex-M3 based microcontrollers with Ethernet, USB, CAN and 12-bit ADC;

http://www.nxp.com/documents/leaflet/75016846.pdf

[3] LPC17xx User Manual;

http://www.keil.com/support/man/docs/mcb1700/mcb1700_to_block.htm
http://www.nxp.com/documents/leaflet/75016846.pdf

http://www.nxp.com/documents/user_manual/UM10360.pdf

[4] Schematic Diagram for the MCB1700 board;

http://www.keil.com/mcb1700/mcb1700-schematics.pdf

[5] ECE 222 lab manual at UWaterloo; https://ece.uwaterloo.ca/~ece222/ECE222_Manual_DRAFT.pdf

[6] ECE 455 lab manual at UWaterloo; https://ece.uwaterloo.ca/~ece455/lab_manual.pdf

http://www.nxp.com/documents/user_manual/UM10360.pdf
http://www.keil.com/mcb1700/mcb1700-schematics.pdf
https://ece.uwaterloo.ca/~ece222/ECE222_Manual_DRAFT.pdf
https://ece.uwaterloo.ca/~ece455/lab_manual.pdf

