
1

EE-379 Embedded Systems and Applications
(Serial) Buses

Cristinel Ababei
Department of Electrical Engineering, University at Buffalo

Spring 2013
Note: This course is offered as EE 459/500 in Spring 2013

Communication systems – the layered view

1) Address information field
physical address specifying the destination/source computers

logical address specifying the destination/source processes (e.g., users)

2) Synchronization or handshake field
Physical synchronization like shared clock, start and stop bits

OS synchronization like request connection or acknowledge

Process synchronization like semaphores

3) Data field
ASCII text (raw or compressed)

Binary (raw or compressed)

4) Error detection and correction field
Vertical and horizontal parity

Checksum

Logical redundancy check (LRC)

Block correction codes (BCC

2

Outline

• UART

• CAN

• I2C

• SPI

Basics
• The most basic method for communication with an

embedded processor is asynchronous serial.
• It is implemented over a symmetric pair of wires

connecting two devices (referred as host and target
here, though these terms are arbitrary).

• Whenever the host has data to send to the target, it
does so by sending an encoded bit stream over its
transmit (TX) wire. This data is received by the target
over its receive (RX) wire.

• The communication is similar in the opposite direction.

3

Basics

• This mode of communications is called
asynchronous because the host and target share
no time reference (no clock signal). Instead,
temporal properties are encoded in the bit
stream by the transmitter and must be decoded
by the receiver.

• A commonly used device for encoding and
decoding such asynchronous bit streams is a
Universal Asynchronous Receiver/Transmitter
(UART).

UART
• UART is a circuit that sends parallel data through a

serial line.

• UARTs are frequently used in conjunction with the RS-
232 standard (or specification), which specifies the
electrical, mechanical, functional, and procedural
characteristics of two data communication equipment.

• Other used standards: EIA, RS-422, RS-485

• A UART includes a transmitter and a receiver.
– The transmitter is a special shift register that loads data in

parallel and then shifts it out bit by bit at a specific rate.

– The receiver shifts in data bit by bit and reassembles the
data.

4

UART

15

Vss

5

4

3

1

2

9

8

7

6

DB9 female

Sin

Sout

U0Rx

U0Tx

Microcontroller

UART
89

710

6

0.1 F

2

0.1 F

0.1 F
5

4

0.1 F
3

1

0.1 F
16

+3.3V

MAX
3232

+5.5V

-5.5V

TxD

RxD

DB25

Pin

RS232

Name

DB9

Pin

EIA-574

Name

Signal Description True DTE DCE

2 BA 3 103 TxD Transmit Data -5.5V out in

3 BB 2 104 RxD Receive Data -5.5V in out

7 AB 5 102 SG Signal Ground

Level converter

UART System block diagram
• UARTs are useful in applications where a lower cost of

connection is desired.

• A UART takes a parallel data stream and funnels it down to a
serial data stream at the transceiver end and then returns the
data stream to a parallel signal at the receiver end.

• This lowers the cost of connection by
– Decreasing the number of transceivers that are necessary.

– Enabling the connecting cable to be less costly and less bulky.

RS-232
RS-485

Serial Signal
8 bit parallel

signal

RS - 232
(SN75LV4737A) UART

(TL16C550C)

UART

RS-232
RS-485 UART

(TL16C550C)
UART

8 bit parallel

signal

5

UART block diagram

Transmitter Operation

• Microcontroller waits until TDRE = '1'

– Loads data into TDR

– Clears TDRE

• UART transfers data from TDR to TSR

– Sets TDRE

• UART outputs start bit ('0') then shifts TSR right
eight times followed by a stop bit ('1')

6

Transmitter SM Chart

UART transmission details
• The serial line is ‘1’ when it is idle.
• The transmission starts with a start-bit, which is ‘0’,

followed by data-bits and an optional parity-bit, and
ends with stop-bits, which are ‘1’.

• The number of data-bits can be 6, 7, or 8.
• The optional parity bit is used for error detection.

– For odd parity, it is set to ‘0’ when the data bits have an
odd number of ‘1’s.

– For even parity, it is set to ‘0’ when the data-bits have an
even number of ‘1’s.

• The number of stop-bits can be 1, 1.5, or 2.

7

UART “agreement”

• No clock information is conveyed through the
serial line.

• Before the transmission starts, the transmitter
and receiver must agree on a set of
parameters in advance:

– the baud-rate (i.e., number of bits per second),

– the number of data bits and stop bits

– use of parity bit

Receiver Operation

• UART waits for start bit

– Shifts bits into RSR

• When all data bits and stop bit are received

– RSR loaded into RDR

– Set RDRF

• Microcontroller waits until RDRF is set

– Read RDR

– Clear RDRF

8

Receiver SM Chart

Data extraction details
• Assume the UART's receiver has a clock running at a multiple of the baud

rate (e.g., 16x).
• Starting in the idle state, the receiver “samples” its RX signal until it detects

a high-low transition.
• Then, it waits 1.5 bit periods (24 clock periods) to sample its RX signal at

what it estimates to be the center of data bit 0.
• The receiver then samples RX at bit-period intervals (16 clock periods) until

it has read the remaining 7 data bits and the stop bit.
• From that point this process is repeated.
• Successful extraction of the data from a frame requires that, over 10.5 bit

periods, the drift of the receiver clock relative to the transmitter clock be
less than 0.5 periods in order to correctly detect the stop bit.

9

DCE and DTE
• Original purpose of the UART was for PCs to

communicate via the telephone network

• Telephones were for voice communication (analog
signals) whereas computers need so exchange
discrete data (digital signals)

• Special ‘communication equipment’ was needed for
doing the signal conversions (i.e., a
modulator/demodulator, or modem)

PC with a modem

computer
 terminal

modem

 serial
 cable

phone
 wire

Data
Terminal
Equipment
(DTE)

Data
Communications
Equipment
(DCE)

10

Normal 9-wire serial cable

1

5

6

9

1
6

9

Carrier Detect

Rx data

Tx data

Data Terminal Ready

Signal Ground

Data Set Ready

Request To Send

Clear To Send

Ring Indicator

5

Signal functions
• CD: Carrier Detect The modem asserts this signal to

indicate that it successfully made its connection to a
remote device

• RI: Ring Indicator The modem asserts this signal to
indicate that the phone is ringing at the other end of
its connection

• DSR: Data Set Ready Modem to PC

• DTR: Data Terminal Ready PC to Modem

• RTS: Request To Send PC is ready for the modem to
relay some received data

• CLS: Clear To Send Modem is ready for the PC to
begin transmitting some data

11

9-wire null-modem cable

CD

RxD

TxD

GND

DSR

DTR

RTS

CTS

RI

CD

RxD

TxD

GND

DSR

DTR

RTS

CTS

RI

 Data
 Terminal
Equipment

Data
Terminal
Equipment

no modems

UART use examples
• UARTs can be used to interface to a wide variety

of other peripherals
– Widely available GSM/GPRS cell phone modems
– Bluetooth modems can be interfaced to a

microcontroller UART
– GPS receivers frequently support UART interfaces

12

Outline

• UART

• CAN

• I2C

• SPI

CAN
• CAN is a multi-master broadcast serial bus

standard for connecting electronic control units
(ECUs).

• Each node is able to send and receive messages,
but not simultaneously.
– A message consists primarily of an ID (identifier),

which represents the priority of the message, and up
to eight data bytes.

– It is transmitted serially onto the bus.

• The devices that are connected by a CAN network
are typically sensors, actuators, and other control
devices. These devices are not connected directly
to the bus, but through a host processor and a
CAN controller.

13

CAN
• The CAN bus (Controller Area Networking) was defined

in the late 1980 by Bosch, initially for use in
automotive applications. It has been found to be very
useful in a wide variety distributed industrial systems

• Characteristics:
– Uses a single terminated twisted pair cable

– Is multi master

– Maximum Signal frequency used is 1 Mbit/sec

– Length is typically 40M at 1Mbit/sec up to 10KM at
5Kbits/sec

– Has high reliability with extensive error checking

– Typical maximum data rate achievable is 40KBytes/sec

– Maximum latency of high priority message <120 μsec at
1Mbit/sec

CAN on LPC17xx

• CAN controller is a sophisticated device

• Nearly all the features of the CAN protocol are
automatically handled by the controller with
almost no intervention by the host processor

• All you need to do in practice is to configure
the controller by writing to its registers, write
data to the controller and the controller then
does all the housekeeping work to get your
message on the bus

14

Before CAN

With CAN

15

CAN is central to automotive networks

CAN terminology

• Entities on the network are called nodes - are
not given specific addresses

• Messages themselves that have an identifier
which also determines the messages’ priority

• Nodes - depending on their function - transmit
specific messages and look for specific
message

16

CAN Node Requires:
• Host processor

– The host processor decides what received messages mean and
which messages it wants to transmit itself.

– Sensors, actuators and control devices can be connected to the
host processor.

• CAN controller (hardware with a synchronous clock)
– Receiving: the CAN controller stores received bits serially from

the bus until an entire message is available, which can then be
fetched by the host processor (usually after the CAN controller
has triggered an interrupt).

– Sending: the host processor stores its transmit messages to a
CAN controller, which transmits the bits serially onto the bus.

• Transceiver
– Receiving: it adapts signal levels from the bus to levels that the

CAN controller expects and has protective circuitry that protects
the CAN controller.

– Transmitting: it converts the transmit-bit signal received from
the CAN controller into a signal that is sent onto the bus.

CAN1,2 on MCB1700 board

High speed CAN
transceiver
integrated circuit

17

CAN devices

CAN – Bit dominance

18

CAN – Bit dominance

CAN – Bit dominance

19

Signal characteristics
• CAN may be implemented over a number of

physical media (most common is a twisted pair of
wires) so long as the drivers are open-collector
and each node can hear itself and others while
transmitting (this is necessary for its message
priority and error handling mechanisms)

• The most popular transceiver chips:
– Philips 82C251
– TJA1040 (on MCB1700 evaluation board)

• It is necessary to terminate the bus at both ends
with 120 Ohms
– prevent reflections
– unload the open collector transceiver drivers

CAN message format

• Start of frame (SOF)

• Message Identifier (MID)

– the Lower the value the Higher the priority of the message

– its length is either 11 or 29 bits long depending on the standard being used

• Remote Transmission Request (RTR)=0

• Control field (CONTROL)

– specifies the number of bytes of data to follow (0-8)

• Data Field (DATA) length 0 to 8 bytes

• CRC field containing a fifteen bit cyclic redundancy check code

• Acknowledge field (ACK)

– an empty slot which will be filled by any and every node that receives the frame

– it does NOT say that the node you intended the data for got it, just that at least
one node on the whole network got it.

• End of Frame (EOF)

20

CAN message format

See nice presentation at: http://marco.guardigli.it/2010/10/hacking-your-car.html

Remote frames
• Frames that are used to request that a particular message be put on

the network - a node somewhere on the network has to be set up to
recognize the request, get the data and put out a Message frame.

• This mechanism is used in polled networks.
• The fields are:

– Start of frame (SOF)
– Message Identifier (MID) either 11 or 29 bits long depending on the

chosen mode.
– Remote Transmission Request (RTR)=1
– Control field (CTRL) this specifies the number of bytes of data expected

to be returned (0-8).
– CRC field containing a fifteen bit cyclic redundancy check code.
– Acknowledge field (ACK) an empty slot which will be filled by any and

every node that receives the frame it does NOT say that the node you
intended the data for got it, just that at least one node on the whole
network got it.

– End of Frame (EOF)

21

Error checking
• CAN is a very reliable system with multiple error checks
• Stuffing error - a transmitting node inserts a high after five

consecutive low bits (and a low after five consecutive high). A
receiving node that detects violation will flag a bit stuffing error.

• Bit error - A transmitting node always reads back the message as it is
sending. If it detects a different bit value on the bus than the one it
sent, and the bit is not part of the arbitration field or in the
acknowledgement field, an error is detected.

• Checksum error - each receiving node checks CAN messages for
checksum errors.

• Frame error - There are certain predefined bit values that must be
transmitted at certain points within any CAN Message Frame. If a
receiver detects an invalid bit in one of these positions a Form Error
(sometimes also known as a Format Error) will be flagged.

• Acknowledgement Error - If a transmitter determines that a message
has not been ACKnowledged then an ACK Error is flagged.

Bit timing
• Each node in a CAN network has its own clock, and no

clock is sent during data transmission
• Synchronization is done by dividing each bit of the

frame into a number of segments:
– Synchronization
– Propagation,
– Phase 1 and phase 2

• The length of each phase segment can be adjusted
based on network and node conditions.

• The sample point falls between phase buffer segment 1
and phase buffer segment 2, which helps facilitate
continuous synchronization.

• Continuous synchronization in turn enables the
receiver to be able to properly read the messages.

22

Bit timing

http://en.wikipedia.org/wiki/CAN_bus

Abstraction or protocol layers
• CAN standardizes only the lower layers
• The CAN protocol, like many networking protocols, can be

decomposed into the following abstraction layers:

23

Examples of CAN interfaces

• National Instruments controller area network (CAN)
interfaces

• PEAK CAN Controllers
– The Peak range of CAN interfaces provides simple and cost

effective connections between PCs and CAN-networks and
includes routers, extenders and adapters to the many CAN
variants.

Outline

• UART

• CAN

• I2C

• SPI

24

I2C
• I2C was created by Philips Semiconductors stands

for Inter-Integrated Circuit (inside TV sets)

• It’s a simple communication protocol

• Allows communication of data between I2C
devices over two wires.

• It sends information serially using one line for
data (SDA) and one for clock (SCL).

• To communicate, a master drives a clock signal on
SCL while driving, or allowing a slave to drive SDA
– Therefore, the bit-rate of a transfer is determined by

the master.

LPC1768 on MCB170 board

25

Single or multi master

I2C Physical Protocol
• Communication between a master and a slave consists of a

sequence of transactions where the master utilizes the SCL as
a clock for serial data driven by the master or a slave on SDA

• When the master wishes to talk to a slave, it begins by issuing a
start sequence on the I2C bus. A start sequence is one of two
special sequences defined for the I2C bus, the other being the
stop sequence. These are also referred to as Start condition (S)
and Stop condition (P)

26

I2C Physical Protocol
• A transaction consists of a sequence of bytes.
• Each byte is sent as a sequence of 8 bits.
• The bits of each byte of data are placed on the SDA line

starting with the MSB. The SCL line is then pulsed high,
then low.

• For every 8 bits transferred, the device receiving the data
sends back an acknowledge bit, so there are actually 9 SCL
clock pulses to transfer each 8 bit byte of data.

I2C Physical Protocol
• If the receiving device sends back a low ACK bit, then it has received the

data and is ready to accept another byte.
• If it sends back a high (Not Acknowledge, NACK) then it is indicating it

cannot accept any further data and the master should terminate the
transfer by sending a stop sequence.

27

Data transfer from master to slave

Data transfer from slave to master

28

Operation FSM

Operation FSM

• Six fundamental operations:

1) Idle,

2) Start condition,

3) Sample SDA,

4) Process Sampled SDA Bit,

5) Stop condition, and

6) Repeated Start condition

29

Speed

• Standard clock speeds:

– 100kHz

– 10kHz

• However, the standard lets us use clock
speeds from zero to 100kHz

• A fast mode is also available (400kHz – Fast
mode)

Examples of I2C devices
• Sensors: barometric, temperature, acceleration, compass
• Real-time clocks, DACs, keyboard
• Controllers: Wii NunChuck
• Memories
• Etc.

30

Wii NunChuck (lab#4)

Wii NunChuck Internals

Function Hardware
Circuit board surface and

mounting

C membrane switch
daughterboard, through-
hole

Z membrane switch
daughterboard, through-
hole

Joystick X axial potentiometer, 30KΩ through-hole

Joystick Y axial potentiometer, 30KΩ through-hole

Accelerometer ST 8XRJ 3L02AE 820 MLT surface mount, top

Microcontroller
FNURVL 405 849KM (48-
pin QFP)

surface mount, bottom

http://wiibrew.org/wiki/Nunchuck#Nunchuk

31

Wii NunChuck Internals

• Joystick: axial
potentiometer, 30KΩ
through-hole

• Accelerometer: ST 8XRJ
3L02AE 820 MLT surface
mount, top

• Microcontroller:
FNURVL(A)-405 849KM
(48-pin QFP) surface
mount, bottom

LPC1768

32

LPC1768:
I2C serial
interface block
diagram

Outline

• UART

• CAN

• I2C

• SPI

33

SPI Basics

• Serial Peripheral Interface (SPI) is a simple
serial communication method/protocol using
4 wires

– Also known as a 4 wire bus

• Used to communicate across small distances

• Multiple Slaves, Single Master

• Synchronized

SPI
• Used to connect devices such as printers,

cameras, scanners, etc. to a desktop computer;
but it has largely been replaced by USB

• SPI can still be a useful communication tool for
some applications

34

SPI
• Fast, Easy to use, Simple

• Everyone supports it

• Has some advantages over I2C

– SPI can communicate at much higher data rates
than I2C.

– Also, when multiple slaves are present, SPI
requires no addressing to differentiate between
these slaves.

Capabilities of SPI

• Always Full Duplex

– Communicating in two directions at the same time

– Transmission need not be meaningful

• Multiple Mbps transmission speed

• Transfers data in 4 to 16 bit characters

• Multiple slaves

– Daisy-chaining possible

35

Communication method

• SPI runs using a master/slave set-up and can
run in full duplex mode (i.e., signals can be
transmitted between the master and the slave
simultaneously).

Master and multiple independent
slaves

36

Master and multiple daisy-chained
slaves

Protocol

• Wires:
– Master Out Slave In (MOSI)
– Master In Slave Out (MISO)
– System Clock (SCLK)
– Slave Select 1…N

• Master Set Slave Select low
• Master Generates Clock
• Shift registers shift in and out data

37

Wires in detail

• MOSI – Carries data out of Master to Slave

• MISO – Carries data from Slave to Master

– Both signals happen for every transmission

• SS_BAR – Unique line to select a slave

• SCLK – Master produced clock to synchronize
data transfer

Shifting detail

38

Clock phase (advanced)

• Two phases and two polarities of clock

• Four modes

• Master and selected slave must be in same
mode

• Master must change polarity and phase to
communicate with slaves of different numbers

Pros and Cons

• Pros:
– Fast and easy

• Fast for point-to-point connections
• Easily allows streaming/Constant data inflow
• No addressing/Simple to implement

– Everyone supports it

• Cons:
– SS makes multiple slaves very complicated
– No acknowledgement ability
– No inherent arbitration
– No flow control

39

SPI block diagram on LPC1768

Summary
Comm.
method

Shares
clock

Num.
of
wires

Speed Dist Pros Cons

UART No 2 115Kbits/sec
max

Medium,
long

Simple;
Widely supported;
Large range of physical standard
interfaces (TTL, RS-232, RS-422,
RS-485);

It’s asynchronous;
Requires reasonable clock accuracy at both
ends;

CAN No 3 1 Mbits/sec Long:
40m
(1Mbit/sec)
up to 10km
(5Kbits/sec)

Highly reliable;
Reduces amount of wiring;
Multi-master capability;

Complex;

I2C Yes 2 100Kbits/sec
400Kbits/sec
fast mode

Short,
medium
(< 6”)

Simple;
Multi-master capability;
Only 2 wires to support multiple
devices;
Robust in noisy or power-
up/down situations;

More complex protocol than SPI;
Harder to level-shift or optoisolate due to
bidirectional lines;
Need for pull-up resistors can reduce power
efficiency in some cases;

SPI Yes 4 10-20Mbits/sec Short Fast, easy, simple;
A lot of support;
Self clocking;
Flexible data word sizes;

Multiple devices need multiple select lines;
No acknowledgement ability;
No inherent arbitration ;
No flow control;
Single master only;

40

Credits, References

• http://www.ece.cmu.edu/~ece649/lectures/11_can.pdf

• http://marco.guardigli.it/2010/10/hacking-your-car.html

• http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-
Introduction.html

• http://www.ni.com/white-paper/2732/en

• http://www.best-microcontroller-projects.com/i2c-tutorial.html

• http://www.robot-electronics.co.uk/acatalog/I2C_Tutorial.html

• http://www.ee.nmt.edu/~teare/ee308l/datasheets/S12SPIV3.pdf

• http://www.eecs.umich.edu/courses/eecs373/refs.html

• Jonathan W. Valvano, Embedded Systems: Introduction to Arm Cortex-M3
Microcontrollers, 2012. (Chapter 8)

http://www.ece.cmu.edu/~ece649/lectures/11_can.pdf
http://www.ece.cmu.edu/~ece649/lectures/11_can.pdf
http://www.ece.cmu.edu/~ece649/lectures/11_can.pdf
http://www.ece.cmu.edu/~ece649/lectures/11_can.pdf
http://www.ece.cmu.edu/~ece649/lectures/11_can.pdf
http://marco.guardigli.it/2010/10/hacking-your-car.html
http://marco.guardigli.it/2010/10/hacking-your-car.html
http://marco.guardigli.it/2010/10/hacking-your-car.html
http://marco.guardigli.it/2010/10/hacking-your-car.html
http://marco.guardigli.it/2010/10/hacking-your-car.html
http://marco.guardigli.it/2010/10/hacking-your-car.html
http://marco.guardigli.it/2010/10/hacking-your-car.html
http://marco.guardigli.it/2010/10/hacking-your-car.html
http://marco.guardigli.it/2010/10/hacking-your-car.html
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
http://www.ni.com/white-paper/2732/en
http://www.ni.com/white-paper/2732/en
http://www.ni.com/white-paper/2732/en
http://www.ni.com/white-paper/2732/en
http://www.ni.com/white-paper/2732/en
http://www.best-microcontroller-projects.com/i2c-tutorial.html
http://www.best-microcontroller-projects.com/i2c-tutorial.html
http://www.best-microcontroller-projects.com/i2c-tutorial.html
http://www.best-microcontroller-projects.com/i2c-tutorial.html
http://www.best-microcontroller-projects.com/i2c-tutorial.html
http://www.best-microcontroller-projects.com/i2c-tutorial.html
http://www.best-microcontroller-projects.com/i2c-tutorial.html
http://www.best-microcontroller-projects.com/i2c-tutorial.html
http://www.best-microcontroller-projects.com/i2c-tutorial.html
http://www.robot-electronics.co.uk/acatalog/I2C_Tutorial.html
http://www.robot-electronics.co.uk/acatalog/I2C_Tutorial.html
http://www.robot-electronics.co.uk/acatalog/I2C_Tutorial.html
http://www.robot-electronics.co.uk/acatalog/I2C_Tutorial.html
http://www.robot-electronics.co.uk/acatalog/I2C_Tutorial.html
http://www.ee.nmt.edu/~teare/ee308l/datasheets/S12SPIV3.pdf
http://www.ee.nmt.edu/~teare/ee308l/datasheets/S12SPIV3.pdf
http://www.ee.nmt.edu/~teare/ee308l/datasheets/S12SPIV3.pdf
http://www.ee.nmt.edu/~teare/ee308l/datasheets/S12SPIV3.pdf
http://www.ee.nmt.edu/~teare/ee308l/datasheets/S12SPIV3.pdf
http://www.ee.nmt.edu/~teare/ee308l/datasheets/S12SPIV3.pdf
http://www.ee.nmt.edu/~teare/ee308l/datasheets/S12SPIV3.pdf
http://www.eecs.umich.edu/courses/eecs373/refs.html
http://www.eecs.umich.edu/courses/eecs373/refs.html
http://www.eecs.umich.edu/courses/eecs373/refs.html

