EE-379 Embedded Systems and Applications
(Serial) Buses

Cristinel Ababei
Department of Electrical Engineering, University at Buffalo
Spring 2013
Note: This course is offered as EE 459/500 in Spring 2013

Communication systems — the layered view
('mnmunimucn

m m

- ~
¢~ Frames \

'\~Pl1\'siml LinE,'

- ———

Messages

-

Y

-+

1) Address information field

physical address specifying the destination/source computers

logical address specifying the destination/source processes (e.g., users)
2) Synchronization or handshake field

Physical synchronization like shared clock, start and stop bits

OS synchronization like request connection or acknowledge

Process synchronization like semaphores

3) Data field
ASCII text (raw or compressed)
Binary (raw or compressed)
4) Error detection and correction field
Vertical and horizontal parity
Checksum
Logical redundancy check (LRC)
Block correction codes (BCC

Outline

UART
CAN
12C
SPI

Basics

The most basic method for communication with an
embedded processor is asynchronous serial.

It is implemented over a symmetric pair of wires
connecting two devices (referred as host and target
here, though these terms are arbitrary).

Whenever the host has data to send to the target, it
does so by sending an encoded bit stream over its
transmit (TX) wire. This data is received by the target
over its receive (RX) wire.

The communication is similar in the opposite direction.

RX & TX
Host Target

TX 3 RX

Basics

This mode of communications is called
asynchronous because the host and target share
no time reference (no clock signal). Instead,
temporal properties are encoded in the bit
stream by the transmitter and must be decoded
by the receiver.

A commonly used device for encoding and
decoding such asynchronous bit streams is a
Universal Asynchronous Receiver/Transmitter
(UART).

UART

UART is a circuit that sends parallel data through a
serial line.

UARTSs are frequently used in conjunction with the RS-
232 standard (or specification), which specifies the
electrical, mechanical, functional, and procedural
characteristics of two data communication equipment.
Other used standards: EIA, RS-422, RS-485

A UART includes a transmitter and a receiver.

— The transmitter is a special shift register that loads data in
parallel and then shifts it out bit by bit at a specific rate.

— The receiver shifts in data bit by bit and reassembles the
data.

16 0.1pF DB9 female
= "

0.1uF ﬂ'_fm Max [2]f55y Vs /O\
4 3232 6 -55V —T >)
Microcontroller +[] _0.1 F ?
0.1uF =R T K —0,
UART = ;
UORx RxD 9 O<} 8 Sin 03 8
—t 0O
U0Tx TxD 10 {>C 7 Sout 02 7
] %
< N

Level converter

DB25 RS232 DB9 EIA-574 Signal | Description True DTE DCE
Pin Name Pin Name
2 BA 3 103 TxD | Transmit Data -5.5V out in
3 BB 2 104 RxD | Receive Data -5.5V in out
7 AB 5 102 SG Signal Ground

UART System block diagram

* UARTSs are useful in applications where a lower cost of
connection is desired.

* A UART takes a parallel data stream and funnels it down to a
serial data stream at the transceiver end and then returns the
data stream to a parallel signal at the receiver end.

* This lowers the cost of connection by

— Decreasing the number of transceivers that are necessary.
— Enabling the connecting cable to be less costly and less bulky.

AN — Ammm— A
UART —» FRs232 e Ry —>
) o W@ —p—p s > UART =P
Serial Signal
8 bit parallel 8 bit parallel

signal signal

UART block diagram

. Data bus 8
- A A A
R R
I I
i RT | sccr o ,
| I [Torm
TIE|RIE I
RxD— RSR } e
I | : I
I |
[Receiver : BAUD rate : Transmitter |
: control] BCIkx8| generator | BClk | control !
]
T iy | | (R e l
1 sese |
“zlc) RE [‘ |0hJ FE| 8 Transmitter
Receiver [

Transmitter Operation

* Microcontroller waits until TDRE ='1'
— Loads data into TDR
— Clears TDRE

* UART transfers data from TDR to TSR
— Sets TDRE

* UART outputs start bit ('0') then shifts TSR right
eight times followed by a stop bit ('1')

Transmitter SM Chart

,Start bit

Shift TSR
inc Bet

UART transmission details

The serial line is ‘1’ when it is idle.

The transmission starts with a start-bit, which is ‘0’,
followed by data-bits and an optional parity-bit, and
ends with stop-bits, which are ‘1’.

The number of data-bits can be 6, 7, or 8.

The optional parity bit is used for error detection.

— For odd parity, it is set to ‘0’ when the data bits have an
odd number of ‘1’s.

— For even parity, it is set to ‘0’ when the data-bits have an
even number of ‘1’s.

The number of stop-bits can be 1, 1.5, or 2.

/ —— start bit —— stop bit

UART “agreement”

* No clock information is conveyed through the
serial line.

» Before the transmission starts, the transmitter
and receiver must agree on a set of
parameters in advance:

— the baud-rate (i.e., number of bits per second),
— the number of data bits and stop bits
— use of parity bit

Receiver Operation

e UART waits for start bit
— Shifts bits into RSR

* When all data bits and stop bit are received
— RSR loaded into RDR
— Set RDRF

e Microcontroller waits until RDRF is set

— Read RDR
— Clear RDRF

Receiver SM Chart

Receive data

Set RDRF
clrl

2
r2

Shift RSR

inc2

-~
Stop bit 7

1
Load RDR

Data extraction details

Assume the UART's receiver has a clock running at a multiple of the baud
rate (e.g., 16x).

Starting in the idle state, the receiver “samples” its RX signal until it detects
a high-low transition.

Then, it waits 1.5 bit periods (24 clock periods) to sample its RX signal at
what it estimates to be the center of data bit 0.

The receiver then samples RX at bit-period intervals (16 clock periods) until
it has read the remaining 7 data bits and the stop bit.

From that point this process is repeated.

Successful extraction of the data from a frame requires that, over 10.5 bit
periods, the drift of the receiver clock relative to the transmitter clock be
less than 0.5 periods in order to correctly detect the stop bit.

idle start

X \ A

]

clock (16x)

DCE and DTE

* Original purpose of the UART was for PCs to
communicate via the telephone network

* Telephones were for voice communication (analog
signals) whereas computers need so exchange
discrete data (digital signals)

* Special ‘communication equipment’ was needed for
doing the signal conversions (i.e., a
modulator/demodulator, or modem)

U [, RxD Telgphone M| RxD |y
" : A line 3 A @ i
omputer R g — R omputer
T xD - xD T
m
_j f— computer
terminal
modem
serial S
cable
Data Data
phone Communications Terminal
wire Equipment Equipment

(DCE) (DTE)

Normal 9-wire serial cable

Carrier Detect

Data Set Ready

Rx data

Request t To Send

Tx data

Clear To Send

Data Terminal Ready

Signal functions

CD: Carrier Detect The modem asserts this signal to
indicate that it successfully made its connection to a
remote device

RI: Ring Indicator The modem asserts this signal to
indicate that the phone is ringing at the other end of
its connection

DSR: Data Set Ready Modem to PC
DTR: Data Terminal Ready PC to Modem

RTS: Request To Send PC is ready for the modem to
relay some received data

CLS: Clear To Send Modem is ready for the PC to
begin transmitting some data

10

9-wire null-modem cable

CD o e CD

RxD RxD
TxD :>< TxD
GND = * GND

DSR >< DSR
DTR DTR
RTS >< RTS
cTS

CTS
RI ® RI
Data Data
Terminal Terminal
Equipment Equipment
no modems

UART use examples

* UARTs can be used to interface to a wide variety

of other peripherals
— Widely available GSM/GPRS cell phone modems

— Bluetooth modems can be interfaced to a
microcontroller UART

— GPS receivers frequently support UART interfaces

Applications PC

Serial data PSoC1
Communication
USB-to-UART UART Embedded
Eg:Terminal |1 USB Port Brid -~ S
.g.: Termina ridge JRS232 ystem
Crscanos

11

Outline

UART
CAN
12C
SPI

CAN

CAN is a multi-master broadcast serial bus
standard for connecting electronic control units
(ECUs).

Each node is able to send and receive messages,
but not simultaneously.
— A message consists primarily of an ID (identifier),

which represents the priority of the message, and up
to eight data bytes.

— It is transmitted serially onto the bus.

* The devices that are connected by a CAN network
are typically sensors, actuators, and other control
devices. These devices are not connected directly
to the bus, but through a host processor and a
CAN controller.

12

CAN

* The CAN bus (Controller Area Networking) was defined
in the late 1980 by Bosch, initially for use in
automotive applications. It has been found to be very
useful in a wide variety distributed industrial systems

* Characteristics:

— Uses a single terminated twisted pair cable
— Is multi master
— Maximum Signal frequency used is 1 Mbit/sec

— Length is typically 40M at 1Mbit/sec up to 10KM at
5Kbits/sec

— Has high reliability with extensive error checking
— Typical maximum data rate achievable is 40KBytes/sec

— Maximum latency of high priority message <120 psec at
1Mbit/sec

CAN on LPC17xx

* CAN controller is a sophisticated device

* Nearly all the features of the CAN protocol are
automatically handled by the controller with
almost no intervention by the host processor

* All you need to do in practice is to configure
the controller by writing to its registers, write
data to the controller and the controller then
does all the housekeeping work to get your
message on the bus

13

Before CAN

Engine
Control
Trans-
mission
Control sion
With CAN
Engine Anti-
Control Lock
Brakes
CA CAN
AN
High Speed
CAN CAN
Trans- Active
mission Suspen
Control sion

14

CAN is central to automotive networks

Additional !
systems

Drive train|

\\" T AT
Steering wheel §[[HH

panel

e CAN
GPS
GSM
LIN
MOST

Digital radico

MOST
Tt

1ovigation Bl oo MRS S

!
2D 0,

z Instruments

| iru

- Central

| body control [

Lock " ==

Controller area network
Global Positioning System

IR |ight
B M g M
HIOEEON

Global System for Mobile Communications

Local interconnect network
Media-oriented systems transport

Lock Window lift
M

Heating
- =
= Interior {[HH

Heating

Heating _ g

M
Lock

HH

Universal light

Trunk

heating [
4

Universal motor

Universal panel

CAN terminology

* Entities on the network are called nodes - are
not given specific addresses

* Messages themselves that have an identifier
which also determines the messages’ priority

* Nodes - depending on their function - transmit
specific messages and look for specific

me

ssage

15

CAN Node Requires:

* Host processor
— The host processor decides what received messages mean and
which messages it wants to transmit itself.
— Sensors, actuators and control devices can be connected to the
host processor.

* CAN controller (hardware with a synchronous clock)

— Receiving: the CAN controller stores received bits serially from
the bus until an entire message is available, which can then be
fetched by the host processor (usually after the CAN controller
has triggered an interrupt).

— Sending: the host processor stores its transmit messages to a
CAN controller, which transmits the bits serially onto the bus.

* Transceiver
— Receiving: it adapts signal levels from the bus to levels that the
CAN controller expects and has protective circuitry that protects
the CAN controller.
— Transmitting: it converts the transmit-bit signal received from
the CAN controller into a signal that is sent onto the bus.

a055800.d g -XaM0D Q0L

CAN1,2 on MCB1700 board

) KL
. 3 Tl @ {|—» canl
d e s a2 2% Lsfe
&3 Ne Slg L
1 | e— I R P T b s

BD

™D_ can
z 2
& % =
~ - }idm SubD 9M

of !
. @ — can

—lom U re
=)

et TIAIM0 10

anl—w—at] s cam L
LI R13 60R
i =]
o R4 . seur |5 e
B 4 -
RIS, GR In
s
 ACBI760 ouly 2 &

[\
|

= Efror Management

M
/ [‘
¢

el
g

High speed CAN
transceiver
integrated circuit

16

CAN devices

ZAN Device

AN L

120R
L

-

Y CANH

120R

GHD

»

—

CAN Device

The main CAN backbone and drops are comprised of a twisted pair of wires.

Node 1

Node 2 Node 3 Node 4

Node 5

Node 6

a,b = 120 0 Y2 watt termination resistors. Drops use the same twisted pair of wires as the backbone.

4 Operation

CAN — Bit dominance

Nodes Anempt Recessive
To Send: 101

100

BEE Noces: [

100

Network Sees: I |

Drops out of
Node 5 competition

+ Each node is assigned a unique identification number

+ All nodes wishing to transmit compete for the channel by transmitting a binary

signal based on their identification value

+ A node drops out the competition if it detects a dominant state while

transmitting a passive state

+ Thus, the node with the lowest identification value wins

17

CAN — Bit dominance

CAN uses the idea of recessive and dominant bits

* Wired “OR” design

+ Bus floats high unless a transmitter pulls it down (dominant)

» (Other bus wire in differential transmission floats low and transmitter pulls up)
4 High is “recessive” value

* Sending a “1” can’t override the value seen on the bus
4 Low is “dominant™” value

* Sending a “0” forces the bus low no matter what another node is sending
5v

Bus State: dominant lLow)

CAN-Bus N L L
(single logical OFF OFF
bus line)
R R

R

dominant —
recessive =
recessive =

[Siemens]

Node A

=
Q
&
]
m
=
Q
=%
@
9]

CAN — Bit dominance

Vﬂ(')l:‘ebiien 0 0 0 | 1 | 0 0 0 ' Node 8 message

Values that each node attempts 1o transmit:

Node 8

ip=0001000f . 0 0 . 0 [1 L0 | 0 | 0 | 8hasthebus
Node 9

ib=oootoot| __ 0 . 0 0 [1o o1

Node 10

ip=ogot010] 0 0 0o | 1 o[1 9 drops out

Node 12 '\
1D=0001100 0 0 0 | 1 1 10,drops out

Node 17 '\

1D=0010001 0 0 | 1 12 drops out

Time \

_— 17 drops out (stops competing for the bus) 1

Signal characteristics

* CAN may be implemented over a number of
physical media (most common is a twisted pair of
wires) so long as the drivers are open-collector
and each node can hear itself and others while
transmitting (this is necessary for its message
priority and error handling mechanisms)

* The most popular transceiver chips:
— Philips 82C251
— TJA1040 (on MCB1700 evaluation board)

* Itis necessary to terminate the bus at both ends
with 120 Ohms

— prevent reflections
— unload the open collector transceiver drivers

CAN message format

|sor| mEssacED | RTR | conTROL | DATA | crc [ack | Eor |

Start of frame (SOF)
Message Identifier (MID)
— the Lower the value the Higher the priority of the message
— its length is either 11 or 29 bits long depending on the standard being used
Remote Transmission Request (RTR)=0
Control field (CONTROL)
— specifies the number of bytes of data to follow (0-8)
Data Field (DATA) length O to 8 bytes
CRC field containing a fifteen bit cyclic redundancy check code
Acknowledge field (ACK)
— an empty slot which will be filled by any and every node that receives the frame

— it does NOT say that the node you intended the data for got it, just that at least
one node on the whole network got it.

End of Frame (EOF)

19

CAN message format

TTTA

Data Frame

Buz
Idle

T

| | |
, #Arbitration | Control Field CRC Field ACK
| Fiald 1 | Field
| | |
| I I
| | |
| | |
E]I
tdantifier [T|C | ¢ | DLz Standard Format
E|E
= t
| ""-._ "'H-“_
I -‘.\\. “-\.“_
| .‘-'\. .‘-'ﬁ
| Ly i
| e ~a
LS b
B Ll Ewrended [P
aze Flo Htende Tl ol oLz Extended Format
Identifier |g | E Identifier R
f

™

ol

PP
Ll
|

Arbitration Field Caontrol Fizld !

See nice presentation at: http://marco.guardigli.it/2010/10/hacking-your-car.html|

Remote frames

Frames that are used to request that a particular message be put on
the network - a node somewhere on the network has to be set up to
recognize the request, get the data and put out a Message frame.
This mechanism is used in polled networks.

The fields are:

Start of frame (SOF)

Message ldentifier (MID) either 11 or 29 bits long depending on the
chosen mode.

Remote Transmission Request (RTR)=1

Control field (CTRL) this specifies the number of bytes of data expected
to be returned (0-8).

CRC field containing a fifteen bit cyclic redundancy check code.
Acknowledge field (ACK) an empty slot which will be filled by any and
every node that receives the frame it does NOT say that the node you
intended the data for got it, just that at least one node on the whole
network got it.

End of Frame (EOF)

20

Error checking

CAN is a very reliable system with multiple error checks

Stuffing error - a transmitting node inserts a high after five
consecutive low bits (and a low after five consecutive high). A
receiving node that detects violation will flag a bit stuffing error.

Bit error - A transmitting node always reads back the message as it is
sending. If it detects a different bit value on the bus than the one it
sent, and the bit is not part of the arbitration field or in the
acknowledgement field, an error is detected.

Checksum error - each receiving node checks CAN messages for
checksum errors.

Frame error - There are certain predefined bit values that must be
transmitted at certain points within any CAN Message Frame. If a
receiver detects an invalid bit in one of these positions a Form Error
(sometimes also known as a Format Error) will be flagged.

Acknowledgement Error - If a transmitter determines that a message
has not been ACKnowledged then an ACK Error is flagged.

Bit timing
Each node in a CAN network has its own clock, and no
clock is sent during data transmission
Synchronization is done by dividing each bit of the
frame into a number of segments:
— Synchronization
— Propagation,
— Phase 1 and phase 2
The length of each phase segment can be adjusted
based on network and node conditions.

The sample point falls between phase buffer segment 1
and phase buffer segment 2, which helps facilitate
continuous synchronization.

Continuous synchronization in turn enables the
receiver to be able to properly read the messages.

21

Bit timing

| Nominal Bit Time |

previous bit XSync Prop Phase 1 ‘ Phase 2 X next bit

TEimplz Paint

Time Quanta

http://en.wikipedia.org/wiki/CAN_bus

Abstraction or protocol layers

* CAN standardizes only the lower layers

* The CAN protocol, like many networking protocols, can be
decomposed into the following abstraction layers:

Application Layer

Object Layer

- Message Filtering
- Message and Status Handling

Transfer Layer

- Fault Confinement

- Error Detection and Signalling
- Message Validation

- Acknowledgment

- Arbitration

- Message Framing

- Transfer Rate and Timing

Physical Layer

- Signal Level and Bit Representation
- Transmission Medium

22

Examples of CAN interfaces

* National Instruments controller area network (CAN)
interfaces

* PEAK CAN Controllers

— The Peak range of CAN interfaces provides simple and cost
effective connections between PCs and CAN-networks and
includes routers, extenders and adapters to the many CAN
variants.

Outline

UART
CAN
12C
SPI

23

12C

I2C was created by Philips Semiconductors stands
for Inter-Integrated Circuit (inside TV sets)

It’s a simple communication protocol

Allows communication of data between 12C
devices over two wires.

It sends information serially using one line for
data (SDA) and one for clock (SCL).

To communicate, a master drives a clock signal on
SCL while driving, or allowing a slave to drive SDA

— Therefore, the bit-rate of a transfer is determined by
the master.

LPC1768 on MCB170 board

pull-up pull-up
resistor resistor

T SCL

LPCXXXX OTHER DEVICE WITH OTHER DEVICE WITH
12C INTERFACE 1 3C INTERFACE

122 bus

SDA SCL

24

Single or multi master

a. Single Master configuration

= -E- -l

Slaves

12C Physical Protocol

* Communication between a master and a slave consists of a
sequence of transactions where the master utilizes the SCL as
a clock for serial data driven by the master or a slave on SDA

* When the master wishes to talk to a slave, it begins by issuing a
start sequence on the 12C bus. A start sequence is one of two
special sequences defined for the 12C bus, the other being the
stop sequence. These are also referred to as Start condition (S)
and Stop condition (P)

SDA MSE_ H X)) i 5B} ACK
SCL
5 P

12C Physical Protocol

A transaction consists of a sequence of bytes.
Each byte is sent as a sequence of 8 bits.

The bits of each byte of data are placed on the SDA line
starting with the MSB. The SCL line is then pulsed high,
then low.

For every 8 bits transferred, the device receiving the data
sends back an acknowledge bit, so there are actually 9 SCL
clock pulses to transfer each 8 bit byte of data.

=na |D7|De|Ds| 04| D3] 02| 01| D0 [ACK]

SCL 1 3004 de e i ds 19

12C Physical Protocol

If the receiving device sends back a low ACK bit, then it has received the
data and is ready to accept another byte.

If it sends back a high (Not Acknowledge, NACK) then it is indicating it
cannot accept any further data and the master should terminate the

26

Data transfer from master to slave

|5T.F-.HT| ADDRESS | W | ACK| DATA |ACF-| DATA |ﬁEK| P |

I:I sent by master
I:I sent by slave

Data transfer from slave to master

|5Tﬁ.FiT| ADDRESS | R | -"UCK| DATA |m:r;| DATA |H"'EK| F |

27

Operation FSM

1SCL||Y5DA

SCLE&E SDA (1dle)

Drm || 5DA

SCL && ! S0 (Start condition,
SCL&& SDA

[Process Sampled SDA)

[Pracess Sampled Data)

SCL&S SDA
(sample SDA) SCL &S 1SDA

[Sample SDA)

S04 [Stop condition)

CLE& 1SDA

Operation FSM

» Six fundamental operations:
1) Idle,
2) Start condition,
3) Sample SDA,
4) Process Sampled SDA Bit,
5) Stop condition, and
6) Repeated Start condition

28

Speed

Standard clock speeds:
— 100kHz
— 10kHz

However, the standard lets us use clock
speeds from zero to 100kHz

A fast mode is also available (400kHz — Fast
mode)

Examples of 12C devices

Sensors: barometric, temperature, acceleration, compass
Real-time clocks, DACs, keyboard

Controllers: Wii NunChuck

Memories

Etc.

29

Wii NunChuck (lab#4)

-

‘.}I%— Analog joystick

| 3-axis acceleromoter
___sensor is installed in
right-angle axis with
Jjoystick

Z button

Handheld

Nunchuk component

+3.3V
SDA | N/C

GND SCL

Pin assignment of Nunchuk connector.

See from front view.

Wii Nun?hu___ck Internals

Function

z

Joystick X
Joystick Y

Accelerometer

Microcontroller

Hardware

membrane switch

membrane switch

axial potentiometer, 30KQ
axial potentiometer, 30KQ
ST 8XRJ 3LO2AE 820 MLT

FNURVL 405 849KM (48-
pin QFP)

Circuit board surface and
mounting

daughterboard, through-
hole

daughterboard, through-
hole

through-hole
through-hole

surface mount, top

surface mount, bottom

http://wiibrew.org/wiki/Nunchuck#Nunchuk

30

Wii NunChuck Internals

* Joystick: axial
potentiometer, 30KQ
through-hole

* Accelerometer: ST 8XRJ
3L02AE 820 MLT surface
mount, top

* Microcontroller:
FNURVL(A)-405 849KM
(48-pin QFP) surface
mount, bottom

LPC1768

High Spaed GRIO
APH slave group 0
UARTE0 &1
- Y .
E
Timars 0 & 1
Tmers2a3 [*
Waindog Timer
e} Exiemal Intemupts
—
Pin Connect Block
Wiokor Cantrol FWM
GPIO Intermupt GO
Cuaariure Encader]
n_x Real Time Ciock
o= Note: shaded peripheral biocks
20 byles ofbacAup support Gensral Pumase DA
rEgistEns
RTC Power Domain

31

LPC1768:

12C serial
interface block
diagram

ADDRESS REGISTERS

[2CnADDAD b 2CnADDRS

MATZHALL
I2CNMMCTRLI]

| MASX and COMPARE |C|

MAS REGISTERS
I2CAMASHD to [ZCNMASKS

=

INPUT
FUTER
SDA | = = = =
SUTPUT
STAGE
_‘ MONITOR MODE |
REGISTER
CBCIMMCTRL
BIT COUNTER!
ST | ARSTRAIOMad [
TIMING and
BLL | CONTROL
LOGIC

niempt

CONTROL REGISTER and
SCLDUTY CYLE REGISTERS

I2CNCONSET, [2CNCONGLE, I2CnSCLH, IRCracLL

]’T

15,

]

il

STATUE
DEGODER

ETATUS REGISTER
2CASTAT

APE BUS

* UART
* CAN
* 12C

* SPI

Outline

32

SPI1 Basics

Serial Peripheral Interface (SPI) is a simple
serial communication method/protocol using
4 wires

— Also known as a 4 wire bus

Used to communicate across small distances

Multiple Slaves, Single Master

Synchronized

SPI

* Used to connect devices such as printers,
cameras, scanners, etc. to a desktop computer;
but it has largely been replaced by USB

* SPI can still be a useful communication tool for
some applications

Digital Set-Top Box
Integrated Controller

PewerPT™

33

SPI

* Fast, Easy to use, Simple
* Everyone supports it
* Has some advantages over 12C

— SPI can communicate at much higher data rates
than 12C.

— Also, when multiple slaves are present, SPI
requires no addressing to differentiate between
these slaves.

Capabilities of SPI

Always Full Duplex
— Communicating in two directions at the same time
— Transmission need not be meaningful

Multiple Mbps transmission speed

Transfers data in 4 to 16 bit characters

Multiple slaves
— Daisy-chaining possible

34

Communication method

* SPI runs using a master/slave set-up and can
run in full duplex mode (i.e., signals can be
transmitted between the master and the slave
simultaneously).

SCLE * SCLE
SPI MOSsI * MOSI SPI
Master MISO |¢— | MISO Slave
55 » S5

Master and multiple independent
slaves

SCLK
MOS|

5P MISO |e
Master 551

552
— SCLK
- MOS| SPI
MISO Slave
55

SCLE

MOSI SPI
MISO Slave
55

L 4 L A J

4

v

—# SCLK
» MOS| SPI
MISO Slave
b

S5

35

Master and multiple daisy-chained

Wires:

— Master Out Slave In (MOSI)
— Master In Slave Out (MISO)
— System Clock (SCLK)

— Slave Select 1...N

Master Set Slave Select low
Master Generates Clock
Shift registers shift in and out data

Master Slave

MOSI
MISO

SCLK
SS_BAR

slaves
MICROCONTROLLER
&l . e
= i 4 S
SLAVE 1 SLAVE 2 SLAVE N
L_|cs L_|cs cs
SCLK SCLE SCLK
KOS DM DouT DIM DOUT —evserme———{ DIN - DOUT
Protocol

36

Wires in detail

MOSI — Carries data out of Master to Slave
MISO — Carries data from Slave to Master

— Both signals happen for every transmission

data transfer

MOSI

SS_BAR — Unique line to select a slave
SCLK — Master produced clock to synchronize

MISO

Master SCLK

SS_BAR

Slave

Shifting detail

SPI Master

SDO

Sl

SP1 Slave

SDI
Tole [

S0

SCK

37

Clock phase (advanced)

* Two phases and two polarities of clock
* Four modes

* Master and selected slave must be in same
mode

* Master must change polarity and phase to
communicate with slaves of different numbers

Pros and Cons

* Pros:

— Fast and easy
* Fast for point-to-point connections
* Easily allows streaming/Constant data inflow
* No addressing/Simple to implement

— Everyone supports it
* Cons:
— SS makes multiple slaves very complicated
— No acknowledgement ability
— No inherent arbitration
— No flow control

38

SPI block diagram on LPC1768

MOSI_N
MOSI_oUT
MISO_IN
MISO_CUT
- SP SHIFT REGISTER ot -
[3
SCK_IN
SOK_OUT
SP1 CLOCK ss)
- GEMERATOR S (o=
5P Inamupt DETECTOR
P
SPI REGISTER 4
APE Bus INTERFACE ¥ L
- -
- 5Pl STATE CONTROL
k
Y SCK_OUT_EN
MOSI_OUT_EN
MIZD_OUT_EN
CUTPUT - -
o ENABLE B =
LOGIC
Comm. | Shares [Num. | Speed Dist Pros Cons
method | clock of
wires
UART No 2 115Kbits/sec Medium, Simple; It’s asynchronous;
max long Widely supported; Requires reasonable clock accuracy at both
Large range of physical standard | ends;
interfaces (TTL, RS-232, RS-422,
RS-485);
CAN No 3 1 Mbits/sec Long: Highly reliable; Complex;
40m Reduces amount of wiring;
(1Mbit/sec) | Multi-master capability;
up to 10km
(5Kbits/sec)
12C Yes 2 100Kbits/sec Short, Simple; More complex protocol than SPI;
400Kbits/sec medium Multi-master capability; Harder to level-shift or optoisolate due to
fast mode (<6”) Only 2 wires to support multiple | bidirectional lines;
devices; Need for pull-up resistors can reduce power
Robust in noisy or power- efficiency in some cases;
up/down situations;
SPI Yes 4 10-20Mbits/sec Short Fast, easy, simple; Multiple devices need multiple select lines;
A lot of support; No acknowledgement ability;
Self clocking; No inherent arbitration ;
Flexible data word sizes; No flow control;
Single master only;

39

Credits, References

http://www.ece.cmu.edu/~ece649/lectures/11 can.pdf
http://marco.guardigli.it/2010/10/hacking-your-car.html

http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-
Introduction.html

http://www.ni.com/white-paper/2732/en

http://www.best-microcontroller-projects.com/i2c-tutorial.html

http://www.robot-electronics.co.uk/acatalog/12C_Tutorial.html
http://www.ee.nmt.edu/~teare/ee308|/datasheets/S12SPIV3.pdf
http://www.eecs.umich.edu/courses/eecs373/refs.html

Jonathan W. Valvano, Embedded Systems: Introduction to Arm Cortex-M3
Microcontrollers, 2012. (Chapter 8)

40

http://www.ece.cmu.edu/~ece649/lectures/11_can.pdf
http://www.ece.cmu.edu/~ece649/lectures/11_can.pdf
http://www.ece.cmu.edu/~ece649/lectures/11_can.pdf
http://www.ece.cmu.edu/~ece649/lectures/11_can.pdf
http://www.ece.cmu.edu/~ece649/lectures/11_can.pdf
http://marco.guardigli.it/2010/10/hacking-your-car.html
http://marco.guardigli.it/2010/10/hacking-your-car.html
http://marco.guardigli.it/2010/10/hacking-your-car.html
http://marco.guardigli.it/2010/10/hacking-your-car.html
http://marco.guardigli.it/2010/10/hacking-your-car.html
http://marco.guardigli.it/2010/10/hacking-your-car.html
http://marco.guardigli.it/2010/10/hacking-your-car.html
http://marco.guardigli.it/2010/10/hacking-your-car.html
http://marco.guardigli.it/2010/10/hacking-your-car.html
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
http://www.esd-electronics-usa.com/Controller-Area-Network-CAN-Introduction.html
http://www.ni.com/white-paper/2732/en
http://www.ni.com/white-paper/2732/en
http://www.ni.com/white-paper/2732/en
http://www.ni.com/white-paper/2732/en
http://www.ni.com/white-paper/2732/en
http://www.best-microcontroller-projects.com/i2c-tutorial.html
http://www.best-microcontroller-projects.com/i2c-tutorial.html
http://www.best-microcontroller-projects.com/i2c-tutorial.html
http://www.best-microcontroller-projects.com/i2c-tutorial.html
http://www.best-microcontroller-projects.com/i2c-tutorial.html
http://www.best-microcontroller-projects.com/i2c-tutorial.html
http://www.best-microcontroller-projects.com/i2c-tutorial.html
http://www.best-microcontroller-projects.com/i2c-tutorial.html
http://www.best-microcontroller-projects.com/i2c-tutorial.html
http://www.robot-electronics.co.uk/acatalog/I2C_Tutorial.html
http://www.robot-electronics.co.uk/acatalog/I2C_Tutorial.html
http://www.robot-electronics.co.uk/acatalog/I2C_Tutorial.html
http://www.robot-electronics.co.uk/acatalog/I2C_Tutorial.html
http://www.robot-electronics.co.uk/acatalog/I2C_Tutorial.html
http://www.ee.nmt.edu/~teare/ee308l/datasheets/S12SPIV3.pdf
http://www.ee.nmt.edu/~teare/ee308l/datasheets/S12SPIV3.pdf
http://www.ee.nmt.edu/~teare/ee308l/datasheets/S12SPIV3.pdf
http://www.ee.nmt.edu/~teare/ee308l/datasheets/S12SPIV3.pdf
http://www.ee.nmt.edu/~teare/ee308l/datasheets/S12SPIV3.pdf
http://www.ee.nmt.edu/~teare/ee308l/datasheets/S12SPIV3.pdf
http://www.ee.nmt.edu/~teare/ee308l/datasheets/S12SPIV3.pdf
http://www.eecs.umich.edu/courses/eecs373/refs.html
http://www.eecs.umich.edu/courses/eecs373/refs.html
http://www.eecs.umich.edu/courses/eecs373/refs.html

