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BE THE DIFFERENCE.

What is




Keyword Spotting v.

General Speech Recognition

e Keyword spotting is one of the most successful examples of TinyML

o Low-power, continuous, on-device

o Common Voice SWTS*expands keyword spotting to more languages

* Single Word Target Segment

e General ASR still requires

o Butit can run on mobile devices (offline dictation on smartphones)

* Automatic Speech Recognition
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More than just voice gl

Security (Broken Glass)

Industry (Anomaly Detection)
Medical (Snore)
Nature (Bee, insect sound)

Challenges and Constraints

Latency

* Provide results quickly; respond in real-time to user
Bandwidth

* Minimize data sent over network (slow and

expensive) %E

Accuracy

* Listen continuously, but only trigger at right time(s) Latency & Bandwidth
Personalization

* Trigger for user not background noise
Security & Privacy

» Safeguard data sent to cloud Security & Privacy

Battery
* Limited energy, operate on coin-cell battery

Memory
* Run on resource constrained devices
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Anatomy of a Keyword Spotting Application

Continuously listen on
the microcontroller

Anatomy of a Keyword Spotting Application
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Anatomy of a Keyword Spotting Application
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Datasets

How do we build a good dataset?

*Who are the users?

*\What do they need?

*What task are they trying to solve?

*How do they interact with the system?
*How does the real world make this hard?
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Speech Commands: A Dataset for Limited-Vocabulary Speech

Recognition

Pete Warden
Google Brain
Mountain View, California

petewarden@google. com

April 2018

https://arxiv.org/pdf/1804.03209.pdf
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Requirements

Common Use
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SIX

V1: 10 words
V2: 35 words
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https://arxiv.org/pdf/1804.03209.pdf
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Sustaining KWS =
Research G

e Speech Commands is now in v2 no
o Expanded to 35 keywords

keyword

from original 10
e Includes train/validation/test splits off
e Expand to new languages? cat
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Common Voice

e Crowdsourcing platform

o
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https://commonvoice.mozilla.org/en
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https://commonvoice.mozilla.org/en

Single Word

Target Segment
A speech commands-style
dataset for 18 languages T U A C
Word Target Segment
' “Yes” // “no” —
e “hey” & “Firefox”
° dig|ts 0-9 https://commonvoice.mozilla.org/en/datasets
19
Food for Thought
QC (Quality Control)
e Need to keep only what a human can hear
e Microphone issues
e Noisy backgrounds
20
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https://commonvoice.mozilla.org/en/datasets

Pre-Processing
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Sensor Data

e 16kHz signal, so that's 16000
samples (points / second)

e How do you feed all of that
data into the network?

e Need to think creatively
about the input signal!
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Guess!

g
g
H

60000

80000

26

13



What are interesting
challenges?

e |tisa continuous signal, so
when does the word start?

e How do you “align” on the
starting point?

e How do we extract the vital
parts of the signal that
matter?
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Sensor Data
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Signal Components?

A2V VRV
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Signal Components?
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Data Preprocessing

20000

OOOOO

~ No Loud

31
Data Preprocessing
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Data Preprocessing
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Data Preprocessing: Spectrograms
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Data Preprocessing: Spectrograms
B e
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Data Preprocessing: Spectrograms

Yes Loud Yes Quiet

8 8§ 8 8 8 8
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Drawbacks of the Spectrogram

1. We hear/perceive pitch exponentially in frequency - because freq. is exponential of our
perception f = 440*27(p/12). So, we do not want to include as many bins from high
frequencies, because we would not be able to make much of a difference between bins
at high freq.

2. We perceive intensity logarithmically in loudness.

3. Spectrograms have a lot of freq. bins; probably more than we need. So, we want to do a
“dimension reduction” or “lossy compression” of the spectrogram that hopefully retains

) @

The lower band frequencies are much crisper to us

38
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Mel (Triangle) Filterbanks

* Take freq. bins nonlinearly to match our perception
* Take say 40 bins (each bin is a triangle) of Vel Filterbanks and
apply (multiply) with the Spectrogram to get: Vel Spectrogram

Frequency / mel
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Spectrograms vs. Mel Spectrograms
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Mel-Frequency Cepstral Coefficients (MFCCs)

* Mel Frequency Cepstral Cpefficients‘LMFCCs) are a feature widely used in automatic speech and
speaker recognition; concisely describe the overall shape of a spectral envelope.

* How to calculate MFCCs

1. Frame the signal into short frames.
For each frame calculate the periodogram estimate of the power spectrum.
Apply the Mel filterbank to the power spectra, sum the energy in each filter.
Take the logarithm of all filterbank energies.
Take the DCT of the log filterbank energies.
Keep DCT coefficients 2-13, discard the rest.

ouhkwN

Spectrogram after multiplication with mel-weighted filterbank Corresponding MFCCs

Spectrogram of a segment of speech

41
Additional Feature Engineering
Normalization: Denoise: reduce
remove volume background
differences noise for clarity ”
42
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Spectrograms and MFCCs

.,
SpectrogramsMFCCs.ipynb P,
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A model for Keyword Spotting

Classification

A Convolution

Input
Image Output

Class

Features m=p
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A model for Keyword Spotting

Classification

A Convolution

Input

Image = =) Features =)

000000000000 006000000

V Spectrograms are just an image
so we can use this same pipeline!
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Credits

® A previous edition of this course was developed in collaboration with Dr. Susan C. Schneider of
Marquette University.
® We are very grateful and thank all the following professors, researchers, and practitioners for

jump-starting courses on TinyML and for sharing their teaching materials:

® Prof. Marcelo Rovai - TinyML - Machine Learning for Embedding Devices, UNIFEI
O https://github.com/Mjrovai/UNIFEI-IESTIO1-TinyML-2022.1

® Prof. Vijay Janapa Reddi - CS249r: Tiny Machine Learning, Applied Machine Learning on Embedded loT Devices,
Harvard

O https://sites.google.com/g.harvard.edu/tinyml|/home

® Prof. Rahul Mangharam — ESE3600: Tiny Machine Learning, Univ. of Pennsylvania

O https://tinyml.seas.upenn.edu/#

® Prof. Brian Plancher - Harvard CS249r: Tiny Machine Learning (TinyML), Barnard College, Columbia University
O https://a2r-lab.org/courses/cs249r_tinyml/
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O https://www.oreilly.com/library/view/tinym|/9781492052036/

Deploy textbook “TinyML Cookbook” by Gian Marco lodice

O https://github.com/PacktPublishing/TinyML-Cookbook

Jason Brownlee
O https://machinelearningmastery.com/
TinyMLedu
O https://tinyml.seas.harvard.edu/
Professional Certificate in Tiny Machine Learning (TinyML) — edX/Harvard

O https://www.edx.org/professional-certificate/harvardx-tiny-machine-learning

Introduction to Embedded Machine Learning - Coursera/Edge Impulse
O https://www.coursera.org/learn/introduction-to-embedded-machine-learning

Computer Vision with Embedded Machine Learning - Coursera/Edge Impulse
O https://www.coursera.org/learn/computer-vision-with-embedded-machine-learning
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