EECE-4710 “loT and TinyML”

TFL Micro “Micro Speech”
Code Walkthrough

Cris Ababei

UNIVERSITY

mﬂ MARQUETTE

BE THE DIFFERENCE.

TensorFlow Lite Micro “Micro Speech” Model

OO

C:\Users\Cristinel Ababei\Documents\Arduino\libraries\Harvard_TinyMLx\examples\micro_speech

micro_speech.ino

“Micro Speech” TFL-Micro Components

Main loop
Device microphone Audio provider
Captures audio
= b samples from
\._) microphone

Feature provider
Converts raw audio
data into spectrograms

TF Lite interpreter Model
Runs the model Trained to classify
> “yes,” “no,” silence, and
unknown

Command recognizer
Uses inference output
to decide if command

was heard
Device LEDs Command responder
. Takes action based on
Q which command was
heard

Figure 7-3. The components of our wake-word application

Declare Variables

INITIALIZATION

Load Model

Resolve Operators

Initialize Interpreter

Allocate Arena

Define Model Inputs

Set Up Main Loop

Declare Variables

// Globals, used for compatibility with Arduino-style sketches.
namespace {

tflite::ErrorReporter® error_reporter = nullptr;

const tflite::Model® model = nullptr;

tflite::MicroInterpreter® interpreter = nullptr;

TfLiteTensor® model input = nullptr;

FeatureProvider* feature provider = nullptr;

RecognizeCommands® recognizer = nullptr;

int32_t previous_time = @;

// Create an area of memory to use for input, output, and intermediate arrays.
// The size of this will depend on the model you're using, and may need to be
// determined by experimentation.

constexpr int kTensorArenaSize = 10 * 1624,]

uints t tensor arena[kTensorArenaSize];
int8_t feature buffer[kFeatureElementCount];
int8 t* model input_buffer = nullptr;

} // namespace

Load Model

[model = tflite::GetModel(g_model) ;]

Load only the needed Ops

// Pull in only the operation implementations we need.

// This relies on a complete list of all the ops needed by this graph.

// An easier approach is to just use the AllopsResolver, but this will

// incur some penalty in code space for op implementations that are not
// needed by this graph.

// tflite::AllOpsResolver resolver;
Resolve Operators // NOLINTNEXTLINE(runtime-global-variables)

static tflite::MicroMutableOpResolver<4s micro_op_resolver(error_reporter);

if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {
return;

}

if (micro_op_resolver.AddFullyConnected() != kTfLiteOk) {
return;

}

if (micro_op_resolver.AddSoftmax() != kTfLiteOk) {
return;

}

if (micro_op_resolver.AddReshape() != kTfLiteOk) {
return;

¥

Used if you have problem with memory

// Build an interpreter to run the model with.
static_tflite::MicroInterpreter static interpreter(

[model, micro op resolver, tensor arena, kTensorArenaSize,]errorireporter);
interpreter = &static_interpreter;

Initialize Interpreter

Allocate Arena

// Allocate memory from the tensor_arena for the model's tensors.

TfLiteStatus allocate status = interpreter->AllocateTensors();

if (allocate status I= kTfLiteok) {
TF_LITE_REPORT_ERROR(error_reporter, "AllocateTensors() failed");
return;

¥

Define Model Inputs

model_input = interpreter->input(0);

model_input_buffer = model_input->data.int8;

10

// Prepare to access the audio spectrograms from a microphone or other source

// that will provide the inputs to the neural network.

// NOLINTNEXTLINE(runtime-global-variables)

static FeatureProvider static_feature_provider(kFeatureElementCount,
teature_buffer);

feature provider = &static feature provider;

static RecognizeCommands static_recognizer(error_reporter);
recognizer = &static recognizer;

Set Up Main Loop previous_time = 0;
¥

11

/{ The name of this function is impertant for Arduine compatibility.
void loop() {

// Fetch the spectrogram for the current time.

const int32_t current_time = LatestAudioTimestamp();

MAIN LOOP
Audio provider
Feature extractor
Madel
1)
.. — o
L
Command recognizer
C r

12

MAIN LOOP

—— Audio provider |

Feature extractor]
Madel
L
o — ~e22
L
Command recognizer
]

int how many new slices = @;
TfLiteStatus feature status = feature provider-»PopulateFeatureData(
error_reporter, previous time, current time, &how many new slices);
if (feature status != kTfLiteoOk) {
TF_LITE_REPORT_ERROR(error_reporter, "Feature generation failed");
return;
}
previous_time = current time;
// If no new audio samples have been rec ed since last time, don't bother
// running the network model.
if (how _many new slices == @) {
return;

}

13

MAIN LOOP

—— Audio provider

Feature extractor |

// Copy feature buffer to input tensor

for (int i = @; 1 < kFeatureklementCount; i++) {
model input buffer[i] = feature buffer[i];

¥

/L Bug the model on the cnectragram igout and make cure it succeeds.

[TfLiteStatus invoke_status = interpreter->Invoke();

([2. — e

Command recognizer
e

1t (1nvoke_status I= kTtLiteOk) {
TF_LITE REPORT ERROR(error_reporter, "Invoke failed");
return;

¥

14

MAIN LOOP

Audio provider |

Feature extractor
Model
1)
Trnimﬁlrwg'. L] =

e ° L
Command recognizer
C r

// Obtain a pointer to the output tensor
TfLiteTensor* output = interpreter->output(e);
// Determine whether a command was recognized based on the output of inference

const char* found_command = nullptr;
uint8_t score = 0;
bool is new command = false;
TfLiteStatus process_status = recognizer->ProcessLatestResults(
output, current_time, &found_command, &score, &is_new_command);
if (process_status != kTfLiteok) {
TF_LITE REPORT ERROR(error reporter,
"RecognizeCommands::ProcessLatestResults() failed");
return;

¥

15

MAIN LOOP

Audio provider |

Feature extractor
Madel
L
Command recognizer

L
.. — o

// Do something based on the recognized command. The default implementation
// just prints to the error console, but you should replace this with your
// own function for a real application.

RespondToCommand (error_reporter, current time, found command, score,

is new_command);

16

Credits

A previous edition of this course was developed in collaboration with Dr. Susan C. Schneider of
Marquette University.
We are very grateful and thank all the following professors, researchers, and practitioners for

jump-starting courses on TinyML and for sharing their teaching materials:

Prof. Marcelo Rovai - TinyML - Machine Learning for Embedding Devices, UNIFEI
O https://github.com/Mjrovai/UNIFEI-IESTIO1-TinyML-2022.1

Prof. Vijay Janapa Reddi - C5249r: Tiny Machine Learning, Applied Machine Learning on Embedded loT Devices,
Harvard

O https://sites.google.com/g.harvard.edu/tinyml|/home

Prof. Rahul Mangharam — ESE3600: Tiny Machine Learning, Univ. of Pennsylvania
O https://tinyml.seas.upenn.edu/#

Prof. Brian Plancher - Harvard CS249r: Tiny Machine Learning (TinyML), Barnard College, Columbia University
O https://a2r-lab.org/courses/cs249r_tinyml/

17

17

References

Additional references from where information and other teaching materials were gathered

include:

Applications & Deploy textbook: “TinyML” by Pete Warden, Daniel Situnayake
O https://www.oreilly.com/library/view/tinym|/9781492052036/

Deploy textbook “TinyML Cookbook” by Gian Marco lodice
O https://github.com/PacktPublishing/TinyML-Cookbook

Jason Brownlee
O https://machinelearningmastery.com/
TinyMLedu
O https://tinyml.seas.harvard.edu/
Professional Certificate in Tiny Machine Learning (TinyML) — edX/Harvard

O https://www.edx.org/professional-certificate/harvardx-tiny-machine-learning

Introduction to Embedded Machine Learning - Coursera/Edge Impulse

O https://www.coursera.org/learn/introduction-to-embedded-machine-learning

Computer Vision with Embedded Machine Learning - Coursera/Edge Impulse

O https://www.coursera.org/learn/computer-vision-with-embedded-machine-learning

18

https://github.com/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1
https://sites.google.com/g.harvard.edu/tinyml/home
https://tinyml.seas.upenn.edu/
https://a2r-lab.org/courses/cs249r_tinyml/
https://www.oreilly.com/library/view/tinyml/9781492052036/
https://github.com/PacktPublishing/TinyML-Cookbook
https://machinelearningmastery.com/
https://tinyml.seas.harvard.edu/
https://www.edx.org/professional-certificate/harvardx-tiny-machine-learning
https://www.coursera.org/learn/introduction-to-embedded-machine-learning
https://www.coursera.org/learn/computer-vision-with-embedded-machine-learning

	Slide 1: TFL Micro “Micro Speech” Code Walkthrough
	Slide 2: TensorFlow Lite Micro “Micro Speech” Model Code Walkthrough!
	Slide 3: “Micro Speech” TFL-Micro Components
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Credits
	Slide 18: References

