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Figure 7-3. The components of our wake-word application
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Declare Variables

// Globals, used for compatibility with Arduino-style sketches.
namespace {

tflite::ErrorReporter® error_reporter = nullptr;

const tflite::Model® model = nullptr;

tflite::MicroInterpreter® interpreter = nullptr;

TfLiteTensor® model input = nullptr;

FeatureProvider* feature provider = nullptr;

RecognizeCommands® recognizer = nullptr;

int32_t previous_time = @;

// Create an area of memory to use for input, output, and intermediate arrays.
// The size of this will depend on the model you're using, and may need to be
// determined by experimentation.

constexpr int kTensorArenaSize = 10 * 1624, ]

uints t tensor arena[kTensorArenaSize];
int8_t feature buffer[kFeatureElementCount];
int8 t* model input_buffer = nullptr;

} // namespace

Load Model

[model = tflite::GetModel(g_model) ;]




Load only the needed Ops

// Pull in only the operation implementations we need.

// This relies on a complete list of all the ops needed by this graph.

// An easier approach is to just use the AllopsResolver, but this will

// incur some penalty in code space for op implementations that are not
// needed by this graph.

// tflite::AllOpsResolver resolver;
Resolve Operators // NOLINTNEXTLINE(runtime-global-variables)

static tflite::MicroMutableOpResolver<4s micro_op_resolver(error_reporter);

if (micro_op_resolver.AddDepthwiseConv2D() != kTfLiteOk) {
return;

}

if (micro_op_resolver.AddFullyConnected() != kTfLiteOk) {
return;

}

if (micro_op_resolver.AddSoftmax() != kTfLiteOk) {
return;

}

if (micro_op_resolver.AddReshape() != kTfLiteOk) {
return;

¥

Used if you have problem with memory

// Build an interpreter to run the model with.
static_tflite::MicroInterpreter static interpreter(

[model, micro op resolver, tensor arena, kTensorArenaSize,]errorireporter);
interpreter = &static_interpreter;

Initialize Interpreter




Allocate Arena

// Allocate memory from the tensor_arena for the model's tensors.

TfLiteStatus allocate status = interpreter->AllocateTensors();

if (allocate status I= kTfLiteok) {
TF_LITE_REPORT_ERROR(error_reporter, "AllocateTensors() failed");
return;

¥

Define Model Inputs

model_input = interpreter->input(0);

model_input_buffer = model_input->data.int8;
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// Prepare to access the audio spectrograms from a microphone or other source

// that will provide the inputs to the neural network.

// NOLINTNEXTLINE(runtime-global-variables)

static FeatureProvider static_feature_provider(kFeatureElementCount,
teature_buffer);

feature provider = &static feature provider;

static RecognizeCommands static_recognizer(error_reporter);
recognizer = &static recognizer;

Set Up Main Loop previous_time = 0;
¥
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/{ The name of this function is impertant for Arduine compatibility.
void loop() {

// Fetch the spectrogram for the current time.

const int32_t current_time = LatestAudioTimestamp();
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int how many new slices = @;
TfLiteStatus feature status = feature provider-»PopulateFeatureData(
error_reporter, previous time, current time, &how many new slices);
if (feature status != kTfLiteoOk) {
TF_LITE_REPORT_ERROR(error_reporter, "Feature generation failed");
return;
}
previous_time = current time;
// If no new audio samples have been rec ed since last time, don't bother
// running the network model.
if (how _many new slices == @) {
return;

}
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MAIN LOOP

—— Audio provider

Feature extractor |

// Copy feature buffer to input tensor

for (int i = @; 1 < kFeatureklementCount; i++) {
model input buffer[i] = feature buffer[i];

¥

/L Bug the model on the cnectragram igout and make cure it succeeds.

[ TfLiteStatus invoke_status = interpreter->Invoke();

([ 2. — e

Command recognizer
e

1t (1nvoke_status I= kTtLiteOk) {
TF_LITE REPORT ERROR(error_reporter, "Invoke failed");
return;

¥
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// Obtain a pointer to the output tensor
TfLiteTensor* output = interpreter->output(e);
// Determine whether a command was recognized based on the output of inference

const char* found_command = nullptr;
uint8_t score = 0;
bool is new command = false;
TfLiteStatus process_status = recognizer->ProcessLatestResults(
output, current_time, &found_command, &score, &is_new_command);
if (process_status != kTfLiteok) {
TF_LITE REPORT ERROR(error reporter,
"RecognizeCommands::ProcessLatestResults() failed");
return;

¥
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// Do something based on the recognized command. The default implementation
// just prints to the error console, but you should replace this with your
// own function for a real application.

RespondToCommand (error_reporter, current time, found command, score,

is new_command);
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O https://github.com/Mjrovai/UNIFEI-IESTIO1-TinyML-2022.1

Prof. Vijay Janapa Reddi - C5249r: Tiny Machine Learning, Applied Machine Learning on Embedded loT Devices,
Harvard

O https://sites.google.com/g.harvard.edu/tinyml|/home

Prof. Rahul Mangharam — ESE3600: Tiny Machine Learning, Univ. of Pennsylvania
O https://tinyml.seas.upenn.edu/#

Prof. Brian Plancher - Harvard CS249r: Tiny Machine Learning (TinyML), Barnard College, Columbia University
O https://a2r-lab.org/courses/cs249r_tinyml/
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O https://github.com/PacktPublishing/TinyML-Cookbook

Jason Brownlee
O https://machinelearningmastery.com/
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O https://tinyml.seas.harvard.edu/
Professional Certificate in Tiny Machine Learning (TinyML) — edX/Harvard

O https://www.edx.org/professional-certificate/harvardx-tiny-machine-learning

Introduction to Embedded Machine Learning - Coursera/Edge Impulse

O https://www.coursera.org/learn/introduction-to-embedded-machine-learning

Computer Vision with Embedded Machine Learning - Coursera/Edge Impulse
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