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Preventing Overfitting

Overfitting generally occurs when there are a small number of training examples.

Data augmentation takes the approach of generating additional training data from your
existing examples by augmenting them using random transformations that yield believable-
looking images. This helps expose the model to more aspects of the data and generalize
better.

4 Training



https://www.tensorflow.org/tutorials/images/data_augmentation
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Using Keras Preprocessing Layers

1 data_augmentation = tf.keras.Sequential([
2 layers.RandomFlip("horizontal_ and vertical"),
3  layers.RandomRotation(0.2),

41)

1 plt.fiqure(figsize=(10, 10))

2 for i in range(9):

3 augmented image = data augmentation(image)
4 ax = plt.subplot(3, 3, i + 1)

5 plt.imshow(augmented image[0])

6 plt.axis("off")

A variety of preprocessing layers you can use for data
augmentation including:

* tf.keras.layers.RandomContrast

* tfkeras.layers.RandomCrop

* tfkeras.layers.RandomZoom

Using tf.image

1 flipped = tf.image.flip left right(image) 1 rotated = tf.image.rot90(image)
2 visualize(image, flipped) 2 visualize(image, rotated)
Original image

Original image Augmented image

Augmented image




Using tf.image

2 seed = (i, 0) # tuple of size (2,)
3 stateless_random crop = tf.image.stateless_random crop(
s . s s 4 image, size=[210, 300, 3], seed=seed
1 saturated = tf.image.adjust_saturation(image, 3) : S i o A J
— 5 visualize(image, stateless_random crop)
2 visualize(image, saturated)

Original image

Original image

Augmented image

<A '

Augmented image

1 bright = tf.image.adjust_brightness(image, 0.4)
2 visualize(image, bright)

Original image Augmented image

Data Augmentation

IESTIO1 data_augmentation.ipynb




Preventin

verfitting

Early Stopping

history = model.fit(X_train,

loss
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y_train,

epochs=600,
validation_data=(X_test, y_test),
verbose=1

)

model loss

—— ftrain
validation

from tensorflow.keras.callbacks import EarlyStopping

early stop = EarlyStopping(monitor='val loss',
mode='min',
verbose=1,
patience=25)

history = model.fit(x=X_ train,
y=y_train,

epochs=600,
validation_data=(X_test, y_test),
verbose=1
callbacks=[earl: top]
)
model loss
07 — train

alidation

loss
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Dropout Regularization

model = tf.keras.models.
tf.
tf.
tf.
tf.
tf.

Sequential([
keras.layers
keras.layers
keras.layers
keras.layers
keras.layers

.Flatten(input_shape=(28,28))

.Dense (256, activation=tf.nn.relu),
.Dense (128, activation=tf.nn.relu),
.Dense (64, activation=tf.nn.relu),
.Dense (18, activation=tf.nn.softmax)])

Fashion MINIST Dataset

e 20 Epochs
® 94.0% Accuracy on Train Data

e 885

% Accuracy on Validation Data
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Dropout Regularization

model = tf.keras.models.Sequential([

tf.
tf.

tf

®
tf.
tf.
tf.
tf.

keras

keras.
keras.
keras.

keras
keras
keras

keras.

.layers.
layers.
layers.
layers.
.layers.
.layers.
.layers.
layers.

Flatten(input_shape=(28,28)),
Dense(256, activation=tf.nn.relu),
Dropout(6.2),

Dense(128, activation=tf.nn.relu),
Dropout(8.2),

Dense(64, activation=tf.nn.relu),
Dropout(8.2),

Dense(18, activation=tf.nn.softmax)])

Fashion MNIST Dataset

e 20
e 89
e 88

Epochs -

.5% Accuracy on Train Dat¢=)
.3% Accuracy on Validation

Renmying a random number of neurons and connections (in
this example, 20%), reduces the chances of the neurons
becoming overspecialized and the model will generalize
better, reducing the overfit.
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Breast Cancer BINARY Classification
Wisconsin Diagnostic Breast Cancer (WDBC)

. o/
Breast_Cancer_Classification.ipynb
«
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End Result of Training

Result of training is to learn the weights of neural
network model.

17

End Result of Training

Learns general features
irrespective of task
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End Result of Training

Labels
A

features

Transfer Learning
(freeze general
feature extraction)

Learns
irrespective of task




Transfer Learning

Train only last
few layers

Task-specific
features
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Example: VGG-16 Convolutional Neural Network Model

convl

—_— Top VGG Layers used to
5 classify 1,000 general
conv2 images (ImageNet)

conv3 Y

conv4

i
convs [
1

28 x 28 x 512

56 x 56 x 256

Elephant
93.0%

1Y% 112 x 128

224 % 224 x 64

First Layer Representation Second Layer Representation Third Layer Representation
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VGG-16

e ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is an annual computer
vision competition. Each year, teams compete on two tasks:

o The first is to detect objects within an image coming from 200 classes, which is called object localization.

o The second is to classify images, each labeled with one of 1000 categories, which is called image
classification.
® VGG-16 was proposed by Karen Simonyan and Andrew Zisserman of the Visual
Geometry Group Lab of Oxford University in 2014 in the paper “VERY DEEP

CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION".

o This model won 1st and 2nd place in the above categories in the 2014 ILSVRC challenge.

https://www.mygreatlearning.com/blog/introduction-to-vggl16/
https://www.geeksforgeeks.org/vgg-16-cnn-model/
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Training the model (Transfer Learning)
Top VGG_Layers _with
Input lmage ( Chqst X-Ray) locally trained weights
Classify:
Ten:g“_” Keras Positive/Negative
for Covid-19
{
Base VGG Layers with original
weights
24
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https://www.mygreatlearning.com/blog/introduction-to-vgg16/
https://www.geeksforgeeks.org/vgg-16-cnn-model/

covidXray

https://qgithub.com/Mjrovai/covid19Xray

L°c'al Fuﬁ
@/

i.e. User_A.png

Detecting Covid-19 in Chest X-Ray images

Inference

covidXray
X-Ray Covid-19 Detection using Al

Prediction
Accuracy (%]

i.e. Positive_Prob_99_Name_
User_A.png

Image Display i : P
Ocal Filgg
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Credits

Marquette University.

® A previous edition of this course was developed in collaboration with Dr. Susan C. Schneider of

® We are very grateful and thank all the following professors, researchers, and practitioners for

jump-starting courses on TinyML and for sharing their teaching materials:

® Prof. Marcelo Rovai - TinyML - Machine Learning for Embedding Devices, UNIFEI
O https://github.com/Mjrovai/UNIFEI-IESTIO1-TinyML-2022.1

Harvard

O https://sites.google.com/g.harvard.edu/tinyml|/home

O https://tinyml.seas.upenn.edu/#

O https://a2r-lab.org/courses/cs249r_tinyml/

® Prof. Vijay Janapa Reddi - CS249r: Tiny Machine Learning, Applied Machine Learning on Embedded loT Devices,

® Prof. Rahul Mangharam — ESE3600: Tiny Machine Learning, Univ. of Pennsylvania

® Prof. Brian Plancher - Harvard CS249r: Tiny Machine Learning (TinyML), Barnard College, Columbia University
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References

Additional references from where information and other teaching materials were gathered

include:

Applications & Deploy textbook: “TinyML" by Pete Warden, Daniel Situnayake
O https://www.oreilly.com/library/view/tinym|/9781492052036/

Deploy textbook “TinyML Cookbook” by Gian Marco lodice

O https://github.com/PacktPublishing/TinyML-Cookbook

Jason Brownlee

O https://machinelearningmastery.com/

TinyMLedu

O https://tinyml.seas.harvard.edu/

Professional Certificate in Tiny Machine Learning (TinyML) — edX/Harvard

O https://www.edx.org/professional-certificate/harvardx-tiny-machine-learning
Introduction to Embedded Machine Learning - Coursera/Edge Impulse

O https://www.coursera.org/learn/introduction-to-embedded-machine-learning
Computer Vision with Embedded Machine Learning - Coursera/Edge Impulse
O https://www.coursera.org/learn/computer-vision-with-embedded-machine-learning
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