EECE-4710 “loT and TinyML”

Preventing Overfitting

Cris Ababei

[fm MARQUETTE
L]

UNIVERSITY

BE THE DIFFERENCE.

Preventing Overfitting
+Data But what to do if we do
not have more data?
Data
* Data Augmentation (artificial)
)ata * Transfer Learning

* Early Stopping
)ata * Dropout Regularization

+ + +

Preventing Overfitting

Overfitting generally occurs when there are a small number of training examples.

Data augmentation takes the approach of generating additional training data from your
existing examples by augmenting them using random transformations that yield believable-
looking images. This helps expose the model to more aspects of the data and generalize
better.

4 Training

https://www.tensorflow.org/tutorials/images/data_augmentation

€mm Training

Using Keras Preprocessing Layers

1 data_augmentation = tf.keras.Sequential([
2 layers.RandomFlip("horizontal_ and vertical"),
3 layers.RandomRotation(0.2),

41)

1 plt.fiqure(figsize=(10, 10))

2 for i in range(9):

3 augmented image = data augmentation(image)
4 ax = plt.subplot(3, 3, i + 1)

5 plt.imshow(augmented image[0])

6 plt.axis("off")

A variety of preprocessing layers you can use for data
augmentation including:

* tf.keras.layers.RandomContrast

* tfkeras.layers.RandomCrop

* tfkeras.layers.RandomZoom

Using tf.image

1 flipped = tf.image.flip left right(image) 1 rotated = tf.image.rot90(image)
2 visualize(image, flipped) 2 visualize(image, rotated)
Original image

Original image Augmented image

Augmented image

Using tf.image

2 seed = (i, 0) # tuple of size (2,)
3 stateless_random crop = tf.image.stateless_random crop(
s . s s 4 image, size=[210, 300, 3], seed=seed
1 saturated = tf.image.adjust_saturation(image, 3) : S i o A J
— 5 visualize(image, stateless_random crop)
2 visualize(image, saturated)

Original image

Original image

Augmented image

<A '

Augmented image

1 bright = tf.image.adjust_brightness(image, 0.4)
2 visualize(image, bright)

Original image Augmented image

Data Augmentation

IESTIO1 data_augmentation.ipynb

Preventin

verfitting

Early Stopping

history = model.fit(X_train,

loss

06

05

04

03

02

01

00

y_train,

epochs=600,
validation_data=(X_test, y_test),
verbose=1

)

model loss

—— ftrain
validation

from tensorflow.keras.callbacks import EarlyStopping

early stop = EarlyStopping(monitor='val loss',
mode='min',
verbose=1,
patience=25)

history = model.fit(x=X_ train,
y=y_train,

epochs=600,
validation_data=(X_test, y_test),
verbose=1
callbacks=[earl: top]
)
model loss
07 — train

alidation

loss

12

Dropout Regularization

model = tf.keras.models.
tf.
tf.
tf.
tf.
tf.

Sequential([
keras.layers
keras.layers
keras.layers
keras.layers
keras.layers

.Flatten(input_shape=(28,28))

.Dense (256, activation=tf.nn.relu),
.Dense (128, activation=tf.nn.relu),
.Dense (64, activation=tf.nn.relu),
.Dense (18, activation=tf.nn.softmax)])

Fashion MINIST Dataset

e 20 Epochs
® 94.0% Accuracy on Train Data

e 885

% Accuracy on Validation Data

13

Dropout Regularization

model = tf.keras.models.Sequential([

tf.
tf.

tf

®
tf.
tf.
tf.
tf.

keras

keras.
keras.
keras.

keras
keras
keras

keras.

.layers.
layers.
layers.
layers.
.layers.
.layers.
.layers.
layers.

Flatten(input_shape=(28,28)),
Dense(256, activation=tf.nn.relu),
Dropout(6.2),

Dense(128, activation=tf.nn.relu),
Dropout(8.2),

Dense(64, activation=tf.nn.relu),
Dropout(8.2),

Dense(18, activation=tf.nn.softmax)])

Fashion MNIST Dataset

e 20
e 89
e 88

Epochs -

.5% Accuracy on Train Dat¢=)
.3% Accuracy on Validation

Renmying a random number of neurons and connections (in
this example, 20%), reduces the chances of the neurons
becoming overspecialized and the model will generalize
better, reducing the overfit.

14

Breast Cancer BINARY Classification
Wisconsin Diagnostic Breast Cancer (WDBC)

. o/
Breast_Cancer_Classification.ipynb
«

Preventing Overfitting

End Result of Training

Result of training is to learn the weights of neural
network model.

17

End Result of Training

Learns general features
irrespective of task

18

End Result of Training

Labels
A

features

Transfer Learning
(freeze general
feature extraction)

Learns
irrespective of task

Transfer Learning

Train only last
few layers

Task-specific
features

21

Example: VGG-16 Convolutional Neural Network Model

convl

—_— Top VGG Layers used to
5 classify 1,000 general
conv2 images (ImageNet)

conv3 Y

conv4

i
convs [
1

28 x 28 x 512

56 x 56 x 256

Elephant
93.0%

1Y% 112 x 128

224 % 224 x 64

First Layer Representation Second Layer Representation Third Layer Representation

22

11

VGG-16

e ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is an annual computer
vision competition. Each year, teams compete on two tasks:

o The first is to detect objects within an image coming from 200 classes, which is called object localization.

o The second is to classify images, each labeled with one of 1000 categories, which is called image
classification.
® VGG-16 was proposed by Karen Simonyan and Andrew Zisserman of the Visual
Geometry Group Lab of Oxford University in 2014 in the paper “VERY DEEP

CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION".

o This model won 1st and 2nd place in the above categories in the 2014 ILSVRC challenge.

https://www.mygreatlearning.com/blog/introduction-to-vggl16/
https://www.geeksforgeeks.org/vgg-16-cnn-model/

23

23
Training the model (Transfer Learning)
Top VGG_Layers _with
Input lmage (Chqst X-Ray) locally trained weights
Classify:
Ten:g“_” Keras Positive/Negative
for Covid-19
{
Base VGG Layers with original
weights
24

12

https://www.mygreatlearning.com/blog/introduction-to-vgg16/
https://www.geeksforgeeks.org/vgg-16-cnn-model/

covidXray

https://qgithub.com/Mjrovai/covid19Xray

L°c'al Fuﬁ
@/

i.e. User_A.png

Detecting Covid-19 in Chest X-Ray images

Inference

covidXray
X-Ray Covid-19 Detection using Al

Prediction
Accuracy (%]

i.e. Positive_Prob_99_Name_
User_A.png

Image Display i : P
Ocal Filgg

25

Credits

Marquette University.

® A previous edition of this course was developed in collaboration with Dr. Susan C. Schneider of

® We are very grateful and thank all the following professors, researchers, and practitioners for

jump-starting courses on TinyML and for sharing their teaching materials:

® Prof. Marcelo Rovai - TinyML - Machine Learning for Embedding Devices, UNIFEI
O https://github.com/Mjrovai/UNIFEI-IESTIO1-TinyML-2022.1

Harvard

O https://sites.google.com/g.harvard.edu/tinyml|/home

O https://tinyml.seas.upenn.edu/#

O https://a2r-lab.org/courses/cs249r_tinyml/

® Prof. Vijay Janapa Reddi - CS249r: Tiny Machine Learning, Applied Machine Learning on Embedded loT Devices,

® Prof. Rahul Mangharam — ESE3600: Tiny Machine Learning, Univ. of Pennsylvania

® Prof. Brian Plancher - Harvard CS249r: Tiny Machine Learning (TinyML), Barnard College, Columbia University

26

https://github.com/Mjrovai/covid19Xray
https://github.com/Mjrovai/UNIFEI-IESTI01-TinyML-2022.1
https://sites.google.com/g.harvard.edu/tinyml/home
https://tinyml.seas.upenn.edu/
https://a2r-lab.org/courses/cs249r_tinyml/

References

Additional references from where information and other teaching materials were gathered

include:

Applications & Deploy textbook: “TinyML" by Pete Warden, Daniel Situnayake
O https://www.oreilly.com/library/view/tinym|/9781492052036/

Deploy textbook “TinyML Cookbook” by Gian Marco lodice

O https://github.com/PacktPublishing/TinyML-Cookbook

Jason Brownlee

O https://machinelearningmastery.com/

TinyMLedu

O https://tinyml.seas.harvard.edu/

Professional Certificate in Tiny Machine Learning (TinyML) — edX/Harvard

O https://www.edx.org/professional-certificate/harvardx-tiny-machine-learning
Introduction to Embedded Machine Learning - Coursera/Edge Impulse

O https://www.coursera.org/learn/introduction-to-embedded-machine-learning
Computer Vision with Embedded Machine Learning - Coursera/Edge Impulse
O https://www.coursera.org/learn/computer-vision-with-embedded-machine-learning

27

14

https://www.oreilly.com/library/view/tinyml/9781492052036/
https://github.com/PacktPublishing/TinyML-Cookbook
https://machinelearningmastery.com/
https://tinyml.seas.harvard.edu/
https://www.edx.org/professional-certificate/harvardx-tiny-machine-learning
https://www.coursera.org/learn/introduction-to-embedded-machine-learning
https://www.coursera.org/learn/computer-vision-with-embedded-machine-learning

	Slide 1: Preventing Overfitting
	Slide 2: Preventing Overfitting
	Slide 3: Preventing Overfitting More Data, Data Augmentation (artificial)
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Data Augmentation Code Time!
	Slide 11: Preventing Overfitting Early Stopping & Dropout Regularization
	Slide 12: Early Stopping
	Slide 13: Dropout Regularization
	Slide 14: Dropout Regularization
	Slide 15: Breast Cancer BINARY Classification Wisconsin Diagnostic Breast Cancer (WDBC) Code Time!
	Slide 16: Preventing Overfitting Transfer Learning
	Slide 17: End Result of Training
	Slide 18: End Result of Training
	Slide 19: End Result of Training
	Slide 20: Transfer Learning
	Slide 21: Transfer Learning
	Slide 22
	Slide 23: VGG-16
	Slide 24: Training the model (Transfer Learning)
	Slide 25: Inference
	Slide 26: Credits
	Slide 27: References

