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BE THE DIFFERENCE.

What is Sensor Fusion?

 Sensor fusion: process of combining inputs from
two or more sensors to produce a more complete,
accurate, and dependable “picture” of the
environment, especially in dynamic settings.

* Goal of sensor fusion: provide improved results
with the minimum number of sensors and
minimum system complexity for the lowest cost.

* Known also as multisensor integration = how to
combine data from different sources?




Example: Autonomous Vehicles
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Sensor Fusion

*Increased data quality
*Increased data reliability
*Estimation of unmeasured states
*Increased coverage areas

Sensor Fusion Levels

*With respect to the abstraction level of data
processing, multi-sensor fusion has been
classified into ;

1. Fusion at the data-level
2. Fusion at the feature-level
3. Fusion at the decision-level




Different fusion levels for sensor information
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Methodologies

1. Statistical:
* Covariance, cross variance

2. Probabilistic:
* Kalman filtering, maximum likelihood estimation,
Bayesian networks
3. Knowledge-based and inference/reasoning:

* Artificial neural networks, fuzzy logic, machine learning
(ML) algorithms
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2. Kalman Filters
Diagnostics

Sensing DSP and Data Fusion Failure Feature Extraction Diagnosis Reasoning

Inject probe test signals for refined diagnosis

Inform
pilot

Vibration
Moments,
FFT

Stored Legacy Failure data
Statistics analysis

Inform
pilot

Identify
Faults/
Failures

Sensor
outputs

Physical
Parameter .
estimates &  Feature/€Ctors Set Decision Thresholds
Sensor Aero. coeff.  fusion Manuf. variability data

" . Usage variability
estimates
\ Fusion / Mission history

Physics of failure S
System dynamics Feature extraction gl aI: ;:.?l:ée l::f{f?;si iarI:r;n;ﬁts
Physical params.” Determine inputs for diagnostic models pert. req

Use physics of failure and failure models to select failure features to include in feature vectors ¢(t) 10

10




3. Machine Learning
Multimodal Sentiment Analysis

MOSI dataset (Zadeh et al, 2016)
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* 2199 subjective video segments
« Sentiment intensity annotations
= 3 modalities: text, video, audio
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Source: MultiComp Lab, CMU
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Sensor Source Classifications

- used to provide
information about the same target, and their outputs are
combined to increase the reliability or confidence of the
output.

- provide information that represents
different aspects of the environment and can be combined to
produce more complete global information.

- combines the inputs from multiple
sensor modalities, such as audio and visual, to produce more
complex information than the individual inputs.
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Competitive, complementary, and cooperative
sensor fusion
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Joint Directors of Laboratories (JDL) model -
for fusion methodologies

— source preprocessing is the lowest level of data fusion. It includes
signal conditioning and fusion at the signal level.

— object refinement uses the preprocessed data from the previous
level to perform spatio-temporal alighnment, correlations, association,
clustering or grouping techniques, state estimation, etc.

— situation assessment establishes relationships between the
classified and identified objects.

— impact assessment evaluates the relative impacts of the detected
activities in level 2 to support a situation analysis.

— process refinement is used to improve Levels 0 to 3 and to support
sensor and general resource management.

https://en.wikipedia.org/wiki/Data_fusion 14
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Sensor Fusion Model

the revised JDL data fusion model (1998)
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Credits

Jeff Shepard, Sensor fusion levels and architectures, 2021

o https://www.sensortips.com/featured/sensor-fusion-levels-and-architectures-fag/

http://www-2.cs.cmu.edu/~sensing-sensors/

A Review of Data Fusion Technigues, Hindawi

A Survey of Internet-of-Things: Future Vision, Architecture, Challenges and Services, IEEE

An Overview of 10T Sensor Data Processing, Fusion, and Analysis Techniques, MDPI

Data Fusion and loT for Smart Ubiquitous Environments, |IEEE

Multi-Modal Fusion for Objective Assessment of Cognitive Workload, IEEE

Sensors and Data Acquisition, Science Direct
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