DE1-S0C

MY FIRST HPS-FPGA

lmaslc ALTETLON
UNIVERSITY
www. terasic.com PROGRAM

Copyright © 2003-2014 Terasic Technologies Inc. All Rights Reserved.

http://www.terasic.com/
www.terasic.com

CONTENTS

.
CHAPTER 1 OVERVIEW. ...ttt ettt sttt b e bbbt ba e s be e s b e ebe e abe st e aeeabe e 3
1.1. REQUIRED BACKGROUNDcutiiiiittiee e itiee e ettt e e e ettee e e stteeeaetteeeseataeeesbeeeeaatbeesaaabeeeessbaeeeaasbseesaasaeeesstseeeasseeessees 3
1.2. SYSTEM REQUIREMENTS .. .utiiiiittiieeitte e e ittt e e etteeeeatbeeeesteeeeaatbaeeaaataeeesasteeeaasbseeeansseeesasbeeeaasbseeeanssseesassaeesasbeeeans 4
1.3. ALTERA SOC FP G A ettt et et e e e ettt e e e e bae e e e eab e e e e etbaeeeabaeeeseateeeeeabeeeeaseeeeeaaees 4
1.4. SOURCE CODEutiiiiittiie ettt e e ettt ettt e e ettt e e e ettt e e e abeeeesbaeeeeetbeeeeaataeeesbseeeaasbeeeeaabseeesbbeeeaasbeeeeaaseseesaabaeeeasbreeens 6
CHAPTER 2 QUARTUS PROUJECT ..ottt ettt ettt ettt sttt bbbt e st are e 7
2.1, MY _FIRST_HPS-FPGA BASE QUARUTS PROJECT .. .tviitiiiieeeiieaieeesteeastaeastssassaeassssastseasssesssesssssssssnssssssssssssssseans 7
2.2, CREATE A QUARTUS PROJECT ...tieutieutietiestte st steesteesteatesseesseesteesbee bt esbeastessaesseesbeesbeesbeanseanteaseesseesbeenbeenbennsassenns 9
2.3. COMPILE AND PROGRAMMINGcccittiieiitteeesiteeeeeitteeesetteeessteeesaetaeeeseaseeessbeeseaabseseeasseseesbteesaasbesesasreeesssreens 11
CHAPTER 3 C PROUJUECT ...ttt ettt ettt ettt b e s te et et e bt e aba e beebeebe s e s 13
3.1. HPS HEADER FILE. .. .ooiiiitiie e ittt ettt e e ettt e ettt e e e e bt e e e eatae e e s baeeeeetbaeeeeabeeeesbbeeeaasbaeeeanseesessreeesanbeeeens 13
3.2 MAP PIO_LED ADDRESS ... utiitieutieitistie st st steesteeste s st sse s sme e sh e b e b et e e b e s b e sh e e sr e e b e s st e s ee e sb e e are e s r e e ne e e nree s 14
3.3. [D O] N 1 2 (o] E SO SRURURTO 15
3.4. IMIAIN PROGRAM ... utittiiee e e et ittt et e e e e e ettt e e e e e s st b eeeeeeeeseatbbaeeeaeessassaebaeeeaeesaasaabaeseeeesaasasbbeseeaesssasbenneeeeessannes 16
3.5. MAKEFILE AND COMPILEciitvieeeiteee e iteeeeeetteeeeetteeessteeeeaetsesesaasesessabaeeeaassesesasbasesssbaeeeanssssesasseeesanbreeeaseeeesnres 17
3.6. EXECUTE THE DEMO ...iiiiiiiii ittt ettt e e e e e ettt a e e e e e e e s eabb b e s e e e e e e s aaabaaaeeaeessababaseeeeessansbbaseesenssannes 18
asic DE1-SoC My First HPS FPGA www. terasic. com

March 4, 2014

www. tarasic.caom

http://www.terasic.com/
www.terasic.com

Chapter 1

Overview

This tutorial is meant for any SoC FPGA starters who wants to know more about how to use the
HPS/ARM to communicate with FPGA. The “My First HPS-FPGA” project is used to demonstrate
the implementation details. This project includes one Quartus project and one ARM C Project and it
demonstrates how HPS/ARM program controls the ten LEDs connected to FPGA.

Before reading this tutorial, developers need to get familiar with those skills included in:

® DEI1-SoC_Getting_Started _Guide.pdf
® My First_Fpga.pdf
e My First_HPS.pdf

For tutorial purpose, this document asks developers to create a HPS enabled Quartus project based
on the project named my_first_hps-fpga_base. However, for the development of a formal HPS
enabled project, developers are expected to create a Quartus project based on the DE1-SOC-GHRD
(Golden Hardware Reference Design) project, which is included in the SYSTEM CD.

1.1. Required Background

This tutorial pre-assumed the developers have the following background knowledge:

B FPGARTL Design

Basic Quartus Il operation skill

Basic RTL coding skill

Basic Qsys operation skill

Knowledge about Altera Memory-Mapped Interface

maslc DE1-SoC My First HPS FPGA 3 www. terasic. com
WA TRFAEIC Com March 4, 2014

http://www.terasic.com/
www.terasic.com

/AVO[S RYA),

B C Program Design

Basic Altera SoC EDS(Embedded Design Suite) operation skill

Basic C coding and compiling skill

Skill to Create a Linux Boot SD-Card for DE1-SoC with a given image file
Skill to boot Linux from SD-Card on DE1-SoC

Skill to cope files into Linux file system on DE1-SoC

Basic Linux command operation skill

1.2. System Requirements

Before starting this tutorial, please note that the following items are required to complete the
demonstration project:

B Altera DE1-SoC FPGA board, includes

® Mini USB Cable for UART terminal
® Micros SD-Card, at 4GB
® Micros SD-Card Card Reader

B AXx86PC
® Windows 7 Installed
® One USB Port
® Quartus 11 13.1 or Later Installed
® Altera SoC EDS 13.1 or Later Installed
® \Win32 Disk Imager Installed

1.3. Altera SoC FPGA

In Altera SoC FPGA, the HPS logic and FPGA fabric are connected through the AXI (Advanced
eXtensible Interface) bridge. For HPS logic to communicate with FPGA fabric, Altera system
integration tool Qsys should be used to design the system. The system must include Altera HPS

maslc DE1-SoC My First HPS FPGA 4 www. terasic. com
Tercom March 4, 2014

www.taras

http://www.terasic.com/
www.terasic.com

ALTERAY

component. From the AXI master port of the HPS component, HPS can access those Qsys
components whose memory-mapped slave ports are connected to the master port.

The HPS contains the following HPS-FPGA AXI1 bridges:
B FPGA-to-HPS Bridge

® HPS-to-FPGA Bridge
® Lightweight HPS-to-FPGA Bridge

Figure 1-1 shows a block diagram of the AXI bridges in the context of the FPGA fabric and the
L3 interconnect to the HPS. Each master (M) and slave (S) interface is shown with its data width(s).
The clock domain for each interconnect is shown in parentheses.

32,64, or 128 Bits 32 Bits 32,64, or 128 Bits
(h2f_axi_clk) (h2f_lw_axi_clk) (h2f_axi_clk)

M 32 Bits 32 Bits s

AXI S {I4_mp_clk) (4_mp_clk) s AXI

AHB | AHB
M M M
(GPV) (GPV)
HPS-to-FPGA AHB AXI AHB FPGA-to-HPS
Bridge Lightweight Bridge
HPS-to-FPGA Bridge
8 S M
P

AXI AXI (GPV) AX|

-5 3
64 Bits 32 Bits 64 Bits
(I3_main_clk) (14_mp_clk) (13_main_clk)

M M S

AXI AXI AXI

(L3 Main Switch) (L3 Slave Peripheral Switch) (L3 Main Switch)
L3 Interconnect

Figure 1-1 AXI Bridge Block Diagram

The HPS-to-FPGA bridge is mastered by the level 3 (L3) main switch and the lightweight
HPS-to-FPGA bridge is mastered by the L3 slave peripheral switch. In the Quartus of this

demonstration, HPS-to-FPGA bridge is used for ARM/HSP to control the LEDs connected to
FPGA.

— H 5 .
asicC DE1-SoC My First HPS FPGA www. terasic. com
www.terasic, com March 4, 2014

http://www.terasic.com/
www.terasic.com

/AVO[S RYA),

The FPGA-to-HPS bridge masters the L3 main switch, allowing any master implemented in the
FPGA fabric to access most slaves in the HPS. For example, the FPGA-to-HPS bridge can access
the accelerator coherency.

All three bridges contains global programmer view GPV register. The GPV register control the
behavior of the bridge. Access to the GPV registers of all three bridges is provided through the
lightweight HPS-to-FPGA bridge.

1.4. Source Code

The demonstration source codes include a Quartus project and a C project. They are located in the
folder:
CD-ROM\Demonstration\SOC_FPGA\my_first_hps-fpga

The Quartus Project is located in the sub-folder “fpga-rt]” and the C project is located in the
sub-folder “hps-c”. In this tutorial, developer are expected to establish these projects from scratch.

asicC DE1-SoC My First HPS FPGA 6 www. terasic. com
WWAW. Tarasic,com March 4, 2014

http://www.terasic.com/
www.terasic.com

Chapter 2

Quartus Project

This chapter introduces how the MY First HSP-FPGA Quartus project is created based on the
my_first_hps-fpga_base Quartus project. Based this Quarturs project, a PIO component for
controlling LED is added, and a connection between the slave port of the PIO component and the
master port of HPS component is established.

2.1. my first_hps-fpga_base Quaruts Project

my_first_hps-fpga_base Quartus project is located in the DE1-SoCSystem CD folder:
CD-ROM\Demonstration\SOC_FPGA\my _first_hps-fpga_base

This Quartus project includes all required pin declares for both HPS and FPGA. Note, the pin
declare of HPS only needs to specify pin direction and 10 standard. Pin location is not required for
the pin declare of HPS. The golden project also includes basic Qsys system which already includes
a HPS component. The HPS component has been well-configured according to hardware design of
DE1-SoC HPS.

Developers can open the Qsys system by opening the Quartus project, and clicking the menu item
“Tools=>Qsys” in Quartus 1. When Qsys tool is launched, it will ask user to select a target Qsys
system file. In this case, please select the Qsys file “soc_system.qsys”. Figure 2-1 shows the
content of soc_system.qgsys Qsys system. It contains hps_0 HPS component.

maslc DE1-SoC My First HPS FPGA 7 www. terasic. com
Tecon March 4, 2014

WwW. Taras

http://www.terasic.com/
www.terasic.com
Cristinel Ababei
Highlight

Tz Connections M aume Description
v E hps 0 Hard Processor Swsterm \
C— f2h_cold_reset req Feset Input
C f2h_debug_reset req Feset Input
O f2h warm reset veq ezt Input
L= feh_stm_hw_events Cond it
L Ty Cond it
s hps_in Conduit
H hf resst Feset Cutput
»— hif s clock Clock Input
- hif ai_master AKT Mazter
»— fah_ad_clock Clock Input
L f2h_axi_slave AKT Slave
»—> haf Iw_aed_clock Clock Input
M - haf lw s master AKT Master __/J
v E hps_only_master TTAG to Avalon Master Brid ge
»— clk Clock Input
— clk_reset Fezet Input
- master Svalon Memory Mapped Master
naster_resst Feset Output
i B sysid_gsvs Systeny ID Peripheral
- clk Clock Input
T—> rest Fezet Input
* f | control_slave A valon Memoror Mapped Slave

Figure 2-1 hps_0 HSP Component in Qsys System

Figure 2-2 shows the lightweight HPS-to-FPGA AXI Master port of the HPS component.
Developers can connect this port to any memory-mapped slave port of components which developer
wish to access from HPS/ARM.

[asic

waw

terasic.com

T Comnections Mame Description
Vv E hps 0 Hard Processor Syvstem
C— f2h_cold_rest req Reset Input
C— f2h_debug_reset reg Reset Input
C— f2h_warm_reset_req Reset Input
< f2h_stm_hw_events Comd it
< TR0 Comd it
s hps_in Conduit
<H hif reset Feset Cutput
— h2f ami clock Clock Input
h2f s master AT Master
— f2h_ami_clock Clock Input
f2h_ami_slave AT Blave
T — hef Iw s clock Clock Input
S C NOf bw_sd_master AT Master —

Figure 2-2 AXI Master Port of HPS component

DE1-SoC My First HPS FPGA

www. terasic. com
March 4, 2014

http://www.terasic.com/
www.terasic.com

2.2. Create a Quartus Project

This section will show how to add a PIO component in Qsys and connect the PIO component to the
HPS component. The PIO component is used to control the ten red LEDs connected to FPGA. First,
please copy the my_first_hps-fpga_base Quartus project to local disk. Open the project and open
the Qsys system file “soc_system.qsys”.

In the Library dialog of Qsys tool, enter ‘pio’ search key as shown in Figure 2-3. When “PIO
(Parallel I/O)” appears, select it. Then, click “Add...” to add the PIO component to the system.

)

Project

F New Component...
Libxaxy

[=-Peripherals

EI-MEIDC ntoaller Per

New ... Edit... | =R Add... |

Figure 2-3 Find and Add PIO Component

When PIO dialog appears, please change Width to 10, make sure “Output” Direction is selected,
and change the Output Port Reset Value to 0x3ff as shown in Figure 2-4.

— H 9 .
asic DE1-SoC My First HPS FPGA www. terasic. com
WwWw. T8rasic, com March 4, 2014

http://www.terasic.com/
www.terasic.com

|~ Basic Settings
Width {1-32 bits): Q—iﬁ 7)
Direction:) Bidir
) Input
) InOut
e Output D

Output Port Reset Yl 0x00000000000003¢)

Figure 2-4 Configure PIO Component

When the PIO component is added into the system, please connect the h2f _Iw_axi_master AXI
master port to the sl slave port of the PIO component as shown in Figure 2-5. By the way, please
change PIO component name to pio_led, change the Clock Input to clk 0, export the Conduit
signal as pio_led_external_connection, and connect the Reset Input to system reset. Note, the
Base address of pio_led PIO component is very important. The ARM program will access the
component according to this base address. In this demonstration, the base address is fixed at
0x0000_0000. The ARM program developer should remember this base address or use a given
Linux shell batch file to extract the address information to a header file hps_0.h. The detail
procedure will be described in the next chapter.

Coanschons Noowe Deacxipton Exgont Clock Baw
B hps 0 Heod Frocemor System
(=2 £25 _sold_peset_peq Reoet Input hps_0_£2h_cold_reset_xeq
o4 £25 debog reset req Resetlnput hps_0_£2h _debug rveset_req
o~ 128 wanm oot ey Reat lnput hps 0 25 _werm_resel veq
= 125 _san hw_events Cond et hps 0 _f2h stin_hw_events
1 ey Cond st ImEmory
=} hpe_ %o Condeit hps 0 _hps s0
o h2_rest Rest Ongat hps 0 h2E yeset
. o M2 _wa_chock Clock lnpat ek O
p——t DRIl _maatr AXL Moaswy (N2 _wx_cho
—— m a_thoeh Clock Inpt el 0
nx_sheve AXE Swve (25 %0 ck (x0000_ooon
EEE /Jhu_m_!b k Llock gt <k 0
Wt s ks AXT Masker > [Hf_bw_ma_
(‘1 pio_led IO (Paredel 1)
| eemman t Clock Input clk 0
{ - ztlop felk]

peo_| N oxh-rnl tomhnn

Figure 2-5 Create Connection Between HPS and PIO component

In the Qsys tool, click menu item “Generate=>HDL Example...” can find the new interface signal
pio_led_external_connection_export for the added pio_led PIO component as shown in Figure
2-6. Developer can click ‘Copy’ to copy the content to a clipboard, then paste the
pio_led_external _connection_export signal to Quartus top and connect it to the LEDR port as
shown in Figure 2-7. Before closing the Qsys tool, please remember to click the menu item
“Generate—>Generate...” to generate source code for the system.

asic DE1-SoC My First HPS FPGA 10 www. terasic. com
WwWw. T8rasic, com March 4, 2014

http://www.terasic.com/
www.terasic.com

/AVO[S RYA),

. - - ¢ q
A& HDL Example - @

You can copy the example HDL below to declare an instance of your Qsys system.

HDL Language: _Verilog - |

Exarmple HDL
“hps_0_hps_io_hps_io_iZcl_inst_SCL {«connected-to-hps_0_hps_io_hps_io_iZcl_inst_3SCL=), f
Chps_ 0 hps_io_hps_io_gpio_inst GPIODY (<comnected-to-hps_0_hps_io_hps_io_gpio_inst GPIOODS=Y, // i
Chps_0_hps_io_hps_io_gpio_inst_GPI03S (=conmected-to-hps_0_hps_io_hps_io_gpio_inst_GPI03S=), //
| Chps 0 hps_io_hps_io_gpio_inst GPIOAD (<comnected-to-hps_0_hps_io_hps_io_gpio_inst GPIOAO=Y, // H
Chps_0_hps_io_hps_io_gpio_inst_GPID41 (=conmected-to-hps_0_hps_io_hps_io_gpio_inst GPIO41=), //
Chps 0 hps_io_hps_io gpio_inst GPIO4S (<comnected-to-hps_0_hps_io_hps_io gpio_inst GPIO4S=y, /)
chps_0_hps_io_hps_io_gpio_inst_GPI0SZ (=conmected-to-hps_0_hps_io_hps_io_gpio_inst GPIOSZ=), // \
Chps_0_hps_io_hps_io_gpio_inst_GPI0S4 (<conmected-to-hps_0_hps_io_hps_io_gpio_inst_GPIOS4s), //
Chps_0_hps_io_hps_io_gpio_inst_GPIDGL (=conmected-to-hps_0_hps_io_hps_io_gpio_inst GPIODGL=), //
Chps_0_h2f_reset_reset_n {econmected-to-hps_0_h2f_reset_reset_m=), i
Chps 0_f2h_stm_tw_events_stm_hwevents (s<conmected-to-hps 0_f2h_stm_hw_events_stm_hweventss), //f W
Chps_0_f2h_warm_reset_reg_reset_n {econmected- to-hps_0_f2h_warm_reset_reg reset_n=), i
_hpe_0_f2h_debug_reset_req reset_n {zconmected- to-hps_0_f2h_debug_reset_req reset_n=), i
Chps_0_f2h_cold_reset_reg_reset_n {zconmected-to-hps_0_f2h_cold_reset_reg reset_n=), i 2N
C_pi0_1ed_external_connection_export {zcomected-to-plo_led_external_commection_export=)) i 3
1
o e | b
P -Copy Close
"y
Figure 2-6 pio_led Interface of System
| & ghrd_top.w D ‘ \.ﬁ Compilation Report - soc_system
FRANGT EE 0 DAam 08 Y8y | 2 EEE
= soc_system ul |
C .pio_led external connection export (LEDR) ,) /f pio_led ext

JMemory mem a
JMEMOry mem ba
.memory mem ck |
.mMemory mem ck n

HPS DDR3_ADDR),
HPS DDR3_BA),

HPS_DDR3_CE_P),
HPS_DDR3_CH _N),

(
(
(
(

Figure 2-7 Initialize .pio_led_external_commection_export in u0 soc_system

2.3. Compile and Programming

Now, developers can start the compile process by clicking the menu item “Processing—> Start
Compilation”. When the compilation process is completed successfully, soc_system.sof is
generated. Developers can use this file to configure FPGA by Quartus Programming through the
DE1-SoC on-board USB-Blaster II.

asic DE1-SoC My First HPS FPGA 1 www. terasic. com
March 4, 2014

www. terasic.com

http://www.terasic.com/
www.terasic.com

ALTERAY

Because .tcl files of SDRAMM DDR3 controller for HPS had been executed in
my_frist_hps-fpga_base Quartus project, so developers can skip these projects. If developers’
Quartus project is not developed based on the my_frist_hps-fpga_base Quartus project, please
remember to execute the .tcl files, as show in Figure 2-8, before executing ‘Start Compilation’. The
TCL Scripts dialog can be launched by clicking the menu item “Tools>TCL Scripts...”.
<gsys_system_name>_parameters.tcl and <gsys_system name>_pin_assignments.tcl tcl files
should be executed, where <gsys_system_name> is the name of your Qsys system. Run this script
to assign constrains tor the SDRAM DDR3 component.

pts
s - - — - - -AAA-Aﬂ

4 O Propct
“a g
S
4 5 0 _systen
4 O nbmwadies
P soran _pO_perameters. 3
ou_scham D0 _sesgreents. icl
bos_scram_pl_pn_map. to
o _sdran _pl_repat_treng. id

tps_scram_pO_report_tyming_core. ol

ps_sdram _pD_twing.ic
4 13 s _sywien
4 o synthess
4 L ndoodden
Proveem:

% (C) 2001-2013 Atera Corporaton. Al Highas ressrved,

¥ Your use of Alters Corporation's desgn ook, logic Sunceony and ather

£ software and 100ls, and its AVPR partner logic functions, and any output

fey vy of e foregong (nckadng deve pragrameeg o mrudadion

= flas), and ary assocated documentaton of nformation are expressly sutject
1o P Yerres and conditors of e Allera Mrogran Lisme Subsoplon

= Agreement, Niers Magalore Function Ucense Agreement, o other appicadie
¥ kerse ajrecment, ndudng, without Restason, that your use s for the

* sole purpose of programeey bg devices manvdactired by Alers and soid by
= Alera or s authorizes deydutis. Please refer % the appicable

¥ sgwement for Satier detals

S R S ARSI RS R RS E RSP RER2SLOREL 2SRRI RRSY

s
£ TMIS IS AN AUTO-GENERATID P
s

* 1 pou modfy S fley, all your changes wil be et £ you
= regener e the core!

.
2 FRE QESCRIFTION -

Qose e
Figure 2-8 TCL file for SDRAM DDR3 of HPS
_ . 12 .
asic DE1-SoC My First HPS FPGA www. terasic. com

March 4, 2014

www. tarasic.com

http://www.terasic.com/
www.terasic.com

Chapter 3

C Profect

This chapter introduces how to design an ARM C program to control the pio_led PIO controller.
Altera SoC EDS is used to compile the C project. For ARM program to control the pio_led PIO
component, pio_led address is required. The Linux built-in driver ‘/dev/mem’ and mmap
system-call are used to map the physical base address of pie_led component to a virtual address
which can be directly accessed by Linux application software.

3.1. HPS Header File

pio_led component information is required for ARM C program as the program will attempt to control the
component. This section describes how to use a given Linux shell batch file to extract the Qsys HPS

information to a header file which will be included in the C program later.

The batch file mentioned above is called as generate_hps_qsys_header.sh. It is located in the same
folder as my_first_hps-fpga Quartus project. To generate the header file, launch Altera SoC EDS
command shell, go to the Quartus project folder, and execute generate_hps_qgsys_header.sh by
typing ‘./generate_hps_qys_header.sh” followed by ENTER key. A header file hps_0.h is generated.
In the header file, the pio_led base address is represented by a constant PIO_LED BASE as show
in Figure 3-1. The pio_led width is represented by a constant PIO_LED DATA_WIDTH. These
two constants will be used in the C program demonstration code.

maslc DE1-SoC My First HPS FPGA 13 www. terasic. com
Tecon March 4, 2014

WwW. Taras

http://www.terasic.com/
www.terasic.com

/AVO[S RYA),

I,n'*
* Macroz for device "pio_led', clazs "altera avalon pio'
* The macroz are prefixed with 'PIO_LED '.

* The prefix iz the zlave descriptor.
*f

#define PIO_LED COMPONENT TYPE altera awvalon pio
' ipe—Plo—LED : NAKME pio led

ED E

#def ine PI0_L

#define PIO_LED END 0Oxlf

#define PIO_LED_BIT CLEARING_EDGE_EEGISTER 0

#define PIO_LED_BIT MODIFYING_OUTPUT_REGISTER O

(gdefine PI0_LED_DATA_WIDTH 10)
defTie PIU_LED_DO_TEST_BENCH_WIRING O

#define PIO_LED _DRIVEN SIM_VALUE 0

#define PIO_LED_EDGE_TYPE WONE

#define FIO_LED_FREQ 0000000

#define PIO_LED_HAS IN 0

#define PIO_LED_HAS OUT 1

#define FPIO_LED_HAS TRI 0
#define FIO_LED_IRO_TYPE NONE
#define PIO_LED_RESET _VALUE 1023

Figure 3-1 pio_led information defined in hps_0.h

3.2. Map pio_led Address

This section will describe how to map the pio_led physical address into a virtual address which is
accessible by an application software. Figure 3-2 shows the C program to derive the virtual address
of pio_led base address. First, open system-call is used to open memory device driver “/dev/mem”,
and then the mmap system-call is used to map HPS physical address into a virtual address
represented by the void pointer variable virtual_base. Then, the virtual address of pio_led can be
calculated by adding the below two offset addresses to virtual_base.

® Offset address of Lightweight HPS-to-FPGA AXI bus relative to HPS base address

® Offset address of Pio_led relative to Lightweight HPS-to-FPGA AXI bus
The first offset address is 0xff200000 which is defined as a constant ALT_LWFPGASLVS_OFST in
the header hps.h. The hps.h is a header of Altera SoC EDS. It is located in the folder:

Quartus Installed Folder\embedded\ip\altera\hps\altera_hps\hwlib\include\socal

The second offset address is 0x00000000 which is defined as PIO_LED_BASE in the hps_0.h
header file which is generated in above section.

The virtual address of pio_led is represented by a void pointer variable h2p Iw_led addr.
Application program can directly use the pointer variable to access the registers in the controller of

maslc‘ DE1-SoC My First HPS FPGA 14 www. terasic. com
March 4, 2014

www.Tar

http://www.terasic.com/
www.terasic.com

/AVO[S RYA),

pio_led.

if({ (£d = open{ "/dev/men”, { O RDWR | O SYNC | j) == -1) {
printf({ "ERRCOE: could not open % "/dev/memh™...vn"™):
return(1 J:

H

wirtual hase = mwap(NULL, HW REGS SPALN, (PROT_READ | PROT_WRITE .
MAP 3HARED, fd, HWU REGS _EASE):

if(wirtual hase == MAP FALTLED | {
printf("ERROE: mmap () failed...'n™):
close(£d):
return(1):

H

hip lw led addr=virtual base +
[{ unsigned long | { ALT LWFPGASLWVI OF3T + PIC _LED BASE)
& [unsigned long) { HW_REGZ MASE |):

Figure 3-2 pio_led information defined in hps_0.h

3.3. LED Control

C programmers need to understand the Register Map of the P1O core for pio_led before they can
control it. Figure 3-3 shows the Register Map for the PIO Core. Each register is 32-bit width. For
detail information, please refer to the datasheet of PIO Core. For led control, we just need to write
output value to the offset O register. Because the led on DE1-SoC is low active, writing a value
0x00000000 to the offset O register will turn on all of the ten red LEDs. Writing a value 0x000003ff
to the offset O register will turn off all of ten red LEDs. In C program, writing a value 0x000003ff to
the offset O register of pio_led can be implemented as:
*(uint32_t *) h2p_lw_led_addr= 0x000003ff;

The state will cast the void pointer to a uint32_t pointer, so C compiler knows write a 32-bit value
0x000003ff to the virtual address h2p_lw_led_addr.

maslc DE1-SoC My First HPS FPGA 15 www. terasic. com
Tecon March 4, 2014

WwW. Taras n

http://www.terasic.com/
www.terasic.com

Fields
Offset Register Name RW
(n-1) 2 1 0
0 i read access R Data value currently on PIO inputs.
ata
write access w New value to drive on P10 outputs.
] direction (1) RIW Individual direction control for each I/0 port. A value of 0 sets the
Srageien direction to input; 1 sets the direction to output.
i) IRQ enable/disable for each input port. Setting a bit to 1 enables
2 interruptsask (if RW interrupts for the corresponding port.
edgecapture (1), (2) RW Edge detection for each input port.
outset w Specifies which bit of the output port to set.
5 outclear w Specifies which output bit to clear.

Figure 3-3 Register Map of PIO Core

3.4. Main Program

In the main program, the LED is controlled to perform LED light sifting operation as shown in
Figure 3-4 . When finishing 60 times of shift cycle, the program will be terminated.

loop mount = 0O;
led mask = 0x01;
led direction = 0;

A4 oontral led,

A wait 100ms
usleep| 100%1000):

A update led mask

led_mask <= 1:

led direction =
loop count++;
h

Yo/ while

Ffo0:
while | loop count < &0)

add ~ hecause the led i=
#luintiZ t ¥l hip lw led addr = ~led mask:

if (led direction == 0){

if {led wask == (0x01 << (PIO LED DATA WIDTH-1)]]
led direction = 1:
telsed
led mask »>= 1:
if [(led mwask == 0x01){

left to right direction
i

low—active

Figure 3-4 C Program for LED Shift Operation

DE1-SoC My First HPS FPGA

[asic

wWww terasic.caom

16 www. terasic. com
March 4, 2014

http://www.terasic.com/
www.terasic.com

ARTERA

3.5. Makefile and compile

Figure 3-5 shows the content of Makefile for this C project. Because the program will include the
hps.h provided by Altera SoC EDS, so the Makefile should include the following path:
“${SOCEDS_DEST_ROOTYV/ip/altera/hps/altera_hps/hwlib/include”

In the makefile, ARM cross-compile also be specified.
1#

z TARGET = my_first_hps-fpga

3

4 #

& CRO353 COMPILE = arm-linux-gnueabihf-

& CFLAGS = -static -g -Wall -I${30CEDS_DEST ROOT}/ip/altera/hps/altera hps/hwlib/include
7 LDFLAGS = -g -Tall

g CC = §(CROSS CONPILE)goo

o ARCH= arm

10

11

1z build: §(TALRGET)
12 §(TARGET) : mwain.o

14 $(CC) #I(LDFLAGE) i —o 3B
15 3.0 @ %.co

16 §$(CC) $(CFLAGS) -o %< -o 38
17

12 .PHONY: clean

19 clean:

0 rm -f §(TARGET) *.a *.o *~

Figure 3-5 Makefile content

To compile the project, type “make” as shown in Figure 3-6. Type “Is” to check the generated
ARM execution file “my _first hps-fpga”.

B /oygdrivelh/sen3/board_folder/DE1-S0C_85K/hps fpga_tutarial fmy_first_hps-fpgashps-c EI@

¢ make

arm—linux—gnueahihf-goce —=static —g —Wall -IG:raltera~s13.1- embedded-ip-alterahp|
= /altera_hpsshulibsinclude —c main.c —o main.o

arm—linux—gnueabihf-gcc —g —Wall main.o —o my_first_hps—fpga

< 1s
hps_B.h main.c main.c.bak main.o Makefile my_first_hps—fpga

Figure 3-6 ARM C Project Compilation

Maslc DE1-SoC My First HPS FPGA 17 www. terasic. com
Tecom March 4, 2014

WWW Teras

http://www.terasic.com/
www.terasic.com

/AVO[S RYA),

3.6. Execute the Demo

To execute the demo, please boot the Linux from the SD-card in DE1-SoC. Copy the execution file
“my_first hps-fpga” to the Linux directory, and type “chmod +x my first hps-fpga” to add
execution attribute to the execute file. Use Quartus Programmer to configure FPGA with the
soc_system.sof generated in previous chapter. Then, type “./my first hps-fpga” to launch the ARM
program. The LED on DE1-SoC will be expected to perform 60 times of LED light shift operation,
and then the program is terminated.

For details about booting the Linux from SD-card, please refer to the document:
DE1-SoC_Getting_Started_Guide.pdf

For details about copying files to Linux directory, please refer to the document:
My_First_HPS.pdf

asicC DE1-SoC My First HPS FPGA 18 www. terasic. com
WWW.TRrasic,com March 4, 2014

http://www.terasic.com/
www.terasic.com

	DE1-SoC My First HPS-FPGA

	Chapter 1 Overview
	1.1. Required Background
	1.2. System Requirements
	1.3. Altera SoC FPGA
	1.4. Source Code

	Chapter 2 Quartus Project
	2.
	2.1. my_first_hps-fpga_base Quaruts Project
	2.2. Create a Quartus Project
	2.3. Compile and Programming

	Chapter 3 C Project
	3.
	3.1. HPS Header File
	3.2. Map pio_led Address
	3.3. LED Control
	3.4. Main Program
	3.5. Makefile and compile
	3.6. Execute the Demo

