Control 7-Segment Display from HPS on DE1-SoC | Embedded.Pro file:///M:/MARQUETTE/EECE4740_VHDL_FPGA/10_DE1_SOC_B...

Home (http://blog.embedded.pro/) Projects (http://blog.embedded.pro/projects/)

About (http://blog.embedded.pro/about/)

Embedded.Pro
(http://blog.embedded.pro/)

Embedded stuff done professionally

Control 7-Segment Display from HPS on DE1-SoC

By Joel Bodenmann (http://blog.embedded.pro/author/joel-bodenmann/) - November 2, 2014 - DE1-SoC
(http://blog.embedded.pro/category/fpga/de1-soc/) Leave a comment (http://blog.embedded.pro/7-segment/#respond)

The DE1-SoC board (http://blog.embedded.pro/de1-soc/) is populated with a six digit 7-segment
display. All digits are connected to the FPGA. Therefore, in order to control the 7-segment display out
of the Linux userspace code, one has to create a new component in QSys that is connected to the
AMBA-AXI bus.

But first of all, please note that this is a blog post, not a comprehensive tutorial. The text below does
not replace the official Altera documentation. Furthermore, the post does just show some code

snippets. However, the fully working project can be found as a download at the very bottom.

QSys Component

| decided to create a component that implements the Avalon-MM bus as it is easy to use and QSys
has an implemented translator to attach such a slave to the AMBA-AXI bus. A new component is
created by double clicking ‘New Component...”in the IP Catalog on the left hand side in QSys. After
adding some generic component information the required signals to interface the Avalon bus can be
added by clicking ‘Template -> Add Avalon-MM Simple Slave’in the ‘Signals’ tab. Furthermore, we need to
add an output signal our self to connect the actual 7-segment digits to the component. We do this by
adding a signal with the name ‘seven_segment’, the interface type ‘New Conduit...” a width of 42 and the
direction set to ‘output’. In the ‘Signal Type’field we type ‘export..

The output width of 42 is required as the six digit 7-segment display consists of 6 * 7 = 42 LEDs.

1of 8 4/28/2021, 11:10 PM

Control 7-Segment Display from HPS on DE1-SoC | Embedded.Pro

20f 8

Mame Interface Signal Type Width Direction
avs_s0_address s0 address 3 input
avs_s0_read s0 read 1 input
avs_s0_readdata s0 readdata 32 output
avs_sl_write s0 write 1 input
avs_s0_writedata s0 writedata 32 input
avs_s_waitrequest s0 waitrequest 1 output
clk clock clk 1 input
reset reset reset 1 input
seven_segment conduit_end export 42 output

seven_segment component signals

In the ‘Files’ tab we click ‘Create Synthesis file From Signals’in the VHDL section to generate a VHDL file.
We can now finish the creation of the new component, add it to the system and connect it to the
clock, reset and bus lanes. Note that we want to use the ‘h2f Iw_axi_master’to connect the new
component to the HPS. The w’ stands for lightweight.

The next thing we have to do is to export the 42-bit output vector so we can access it from our VHDL
code. We do this by double-clicking in the corresponding area and naming it (eg.
output_seven_segment). The last thing to do is to give the newly added component a base address that

is not occupied yet. | chose 0x00040000 in the example below:

7-Segment QSys Component

After generating the VHDL code from QSys we want to wire the actual 7-segment LEDs to the
component. The SoC component generated by QSys does now have a new vector (the 42-bit LED

vector) in its entity so we can simply map it to our HEXO to HEX5 vectors in the top level file:

output_seven_segment_export(6+7*0 downto 7%*0) => HEX®@,
output_seven_segment_export(6+7*1 downto 7%*1) => HEX1,
output_seven_segment_export(6+7*2 downto 7%*2) => HEX2,
output_seven_segment_export(6+7*3 downto 7%*3) => HEX3,
output_seven_segment_export(6+7*4 downto 7%*4) => HEX4,
output_seven_segment_export(6+7*5 downto 7*5) => HEX5

VHDL Implementation

We have now created a component that is connected to the ARM AMBA-AXI bus. The next step is to
implement the actual logic. We have to listen to the Avalon bus and control the LEDs of the 7-segment

display.

file:///M:/MARQUETTE/EECE4740_VHDL_FPGA/10_DE1_SOC_B...

4/28/2021, 11:10 PM

Control 7-Segment Display from HPS on DE1-SoC | Embedded.Pro file:///M:/MARQUETTE/EECE4740_VHDL_FPGA/10_DE1_SOC_B...
We can observe the Avalon bus waveforms in the ‘Interfaces’ tab of the QSys component properties

page:

© Resd Waveforms

el 1 [1

read r4 N
wiile

wallrequest 7 ™, £

addrass ¥ s

readdata X X

= Wirite Wavelorms

clk EE e e e i
réad

wiile _-"I h! .'r \
wailrequas] .; 1'-. ! _"|) il
address L D i W= i

wiila data oo ¥ X o2 i

Avalon-MM Bus Waveforms

Therefore, all we have to do is to listen to the ‘write’ signal and handle the ‘address’and ‘writedata’
vectors accordingly.

As the Avalon has a bus width of 32-bits, | decided to use the lower 24 bits to transmit the BCD
encoded values for all six digits. Therefore, not every digits has it's own address but instead all six
digits are controlled via the same address. | added another register (= address) to be able to enable
or disable (disable as in blank) every digit on its own. Another register was added to control the
brightness of the display through a built-in PWM controller.

So from a software developers point of view, the 7-segment peripheral looks like this:

Register Purpose

0x00 Set display value

0x01 Set display brightness (0 to 255)

0x02 Enable/Disable digit (0 = disabled; 1 = enabled)

The implementation looks like this (note that this is just a code snipped, full code can be found at the
bottom):

30of 8 4/28/2021, 11:10 PM

Control 7-Segment Display from HPS on DE1-SoC | Embedded.Pro file:///M:/MARQUETTE/EECE4740_VHDL_FPGA/10_DE1_SOC_B...
process(all)
begin

if reset = '1' then

bcdo <= (others => '0');
bcdl <= (others => '9');
bcd2 <= (others => '0');
bcd3 <= (others => '9');
bcd4 <= (others => '0');
bcd5 <= (others => '9');

enable_reg <= (others => '0');
elsif rising edge(clk) then

-- Wait until something interesting happens on the bus

if avs_s@ _write = '1' then

-- What should we do?

case avs_s@_address(3 downto 9) is

-- Write to the display

when X"0" =>
bcdo <= avs_s@_writedata(3 downto 0);
bcdl <= avs_s@_writedata(7 downto 4);
bcd2 <= avs_s@_writedata(1l downto 8);
bcd3 <= avs_s@_writedata(15 downto 12);
bcd4 <= avs_s@_writedata(19 downto 16);
bcd5 <= avs_s@_writedata(23 downto 20);

-- Change the PWM value (6 to 255)
when X"1" =>

pwm_reg <= avs_sO_writedata(7 downto 9);

-- The enable_reg register
when X"2" =>

enable_reg <= avs_s@_writedata(5 downto 0);
when others =>

end case;
end if;
end if;

end process;

We can clearly see the implementation of the different address mapped features as they are

implemented as a simple switch/case statement.

Interfacing from the Linux user space

4 of 8 4/28/2021, 11:10 PM

Control 7-Segment Display from HPS on DE1-SoC | Embedded.Pro file:///IM:/MARQUETTE/EECE4740_VHDL_FPGA/10_DE1_SOC_B...
Assuming that we booted the FPGA configured with the 7-segment controller we are now able to talk
to this peripheral from our user space. We use the Linux program mmap to map our newly created
AMBA-AXI bus member to a virtual memory address.
But first of all we have to run a scrip that reads the QSys file and creates a C-Header containing
information about the address space. The script comes with the board examples from Terasic and is
called ‘generate_hps_qgsys_header.sh’. Note that you have to run this script in the shell that came with
the Quartus-Il installation that can be opened by executing Embedded_Command_Shell.bat in the

installation directory. The generated header file contains the following definitions:

#tdefine OUTPUT_SEVEN_SEGMENT_COMPONENT_TYPE seven_segment
#tdefine OUTPUT_SEVEN_SEGMENT_COMPONENT_NAME output_seven_segment

#define OUTPUT_SEVEN_SEGMENT_BASE 0x40000
#define OUTPUT_SEVEN_SEGMENT_SPAN 1024
#define OUTPUT_SEVEN_SEGMENT_END ox403ff

We can now use these macros in our code to map the 7-segment controller to the virtual memory

Space:
if ((fd = open("/dev/mem", (O_RDWR | O_SYNC))) == -1) {
printf("ERROR: could not open \"/dev/mem\"...\n");
return 1;
}

virtual_base = mmap(NULL, HW_REGS_SPAN, (PROT_READ | PROT_WRITE), MAP_SHARED, fd, HW_REGS_BASE);

if (virtual_base == MAP_FAILED) {
printf("ERROR: mmap() failed...\n");
close(fd);

return 1;

addr_seven_seg = virtual_base + ((unsigned long) (ALT_LWFPGASLVS_OFST + OUTPUT_SEVEN_SEGMENT_BASE) & (unsigned lor

Altera provides the following routine to write to the AMBA-AXI bus slave with their library:

alt_write_word(uint32_t addr, uint32_t data);

Therefore, we can simply do:

50f8 4/28/2021, 11:10 PM

Control 7-Segment Display from HPS on DE1-SoC | Embedded.Pro file:///M:/MARQUETTE/EECE4740_VHDL_FPGA/10_DE1_SOC_B...

alt_write_word(addr_seven_seg, ©x12F4A6);

And the number 12F4A6 will appear on the display.

The brightness can now be controlled via this call:

alt_write_word(addr_seven_seg+4, 0x150); // Set brightness to 58%

An important note at this point: As the ARM is four byte aligned, you have to add 4 to reach the next
address of the Avalon slave. So slave address 0x02 equals addr_seven_seg+8.

The resulting binary can be transferred to the booted Linux running on the HPS using SCP. On

execution it should dim the display to a modest value and start counting.

Follow up

| found it extremely useful to not implement the actual logic of a QSys component in the QSys created
VHDL file but instead to create a custom VHDL file (I always gave them a_implementation.vhd suffix)
and simply create an instance of that block in the QSys generated file. This way you don't have to re-
generate the QSys code when you changed the implementation of the actual block. This turned out to

be a huge time saver during development.

Download

Please use this on your own risk: de1_soc_seven_segment.zip (http://blog.embedded.pro/wp-

content/uploads/2014/11/de1_soc_seven_segment.zip)

«— DE1-SoC Project Template (http://blog.embedded.pro/de1-soc/)
Using the Serial Port on the DE1-SoC — (http://blog.embedded.pro/using-the-serial-port-on-the-de1-
soc/)

Leave a Comment

Your email address will not be published.

6 of 8 4/28/2021, 11:10 PM

Control 7-Segment Display from HPS on DE1-SoC | Embedded.Pro file:///M:/MARQUETTE/EECE4740_VHDL_FPGA/10_DE1_SOC_B...

Comment...

Name¥* Email* Website

Submit

Search Here... Search

Recent Posts

Improvised: Dummy Load (http://blog.embedded.pro/improvised-dummy-load/)

DE1-SoC: Using SSH keys (http://blog.embedded.pro/de1-soc-using-ssh-keys/)

DE1-SoC: A better Makefile (http://blog.embedded.pro/de1-soc-a-better-makefile/)
STM32F7 12C HAL (http://blog.embedded.pro/stm32f7-i2c-hal/)

Custom KiCAD libraries under Windows (http://blog.embedded.pro/custom-kicad-libraries-

under-windows/)

Categories

® FPGA (http://blog.embedded.pro/category/fpga/) (5)
o DE1-SoC (http://blog.embedded.pro/category/fpga/de1-soc/) (5)
e Improvised (http://blog.embedded.pro/category/improvised/) (1)
e KiCAD (http://blog.embedded.pro/category/kicad/) (1)
e | aboratory (http://blog.embedded.pro/category/laboratory/) (3)
e Operating Systems (http://blog.embedded.pro/category/operating-systems/) (3)
o Linux (http://blog.embedded.pro/category/operating-systems/linux/) (1)
o Windows (http://blog.embedded.pro/category/operating-systems/windows/) (2)
e Qt (http://blog.embedded.pro/category/qt/) (1)
e STM32 (http://blog.embedded.pro/category/stm32/) (1)

Archives

e January 2016 (http://blog.embedded.pro/2016/01/)
e August 2015 (http://blog.embedded.pro/2015/08/)

7 of 8 4/28/2021, 11:10 PM

Control 7-Segment Display from HPS on DE1-SoC | Embedded.Pro file:///M:/MARQUETTE/EECE4740_VHDL_FPGA/10_DE1_SOC_B...
e July 2015 (http://blog.embedded.pro/2015/07/)
e June 2015 (http://blog.embedded.pro/2015/06/)
e April 2015 (http://blog.embedded.pro/2015/04/)
e March 2015 (http://blog.embedded.pro/2015/03/)
e November 2014 (http://blog.embedded.pro/2014/11/)

© 2016 - Embedded.Pro Designed on rtPanel WordPress Theme Framework (https://rtcamp.com/rtpanel/).

8of 8 4/28/2021, 11:10 PM

