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ECE-470 Digital Design II
Compression Techniques
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Key Points

• Memory savings should overcome the extra 
hardware to implement the compression 
unit

• The compression unit could be 
implemented together with the CUT, 
achieving built-in self-test (BIST): to be 
discussed in a later lecture
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Compression Unit Requirements

• Should not introduce big signal delays

• Length of signature should be a logarithmic 
factor of the length of the output response 
length

• If response of faulty CUT is different from correct 
response, the faulty signature should also be 
different from the good signature. No error 
masking (otherwise faulty response is an alias of 
the correct output response)
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1. Ones-Count Compression

• Signature: 1C(R) = ∑ ri

• Compressor: simple counter

• Degree of compression: |log2(m+1)|
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Ones-Count Compression

• Separate counter for each PO for multi-
output circuits, or

• Parallel-to-serial converter first, then a 
single counter

• Theorem 1: Masking probability for ones-
count compression for a combinational 
circuit approaches (πm)-1/2
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Ones-Count Compression

• Theorem 2: When applying ones counting and 
the test set T’(C) to C, no error masking occurs for 
any fault in F

• Where:

– C: combinational circuit, with F faults of interest

– T = {T0, T1} set of m test vectors that detect F

– T’(C): test set with one copy of every pattern in T0
and |T0| + 1 copies of every pattern in T1

– For all tests in T0, the fault free response is 0; for all 
tests in T1, the fault free response is 1
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2. Transition-Count Compression

• Signature: TC(R) = ∑ (ri XOR ri+1)
• Compressor: transition detector (TD) and a counter 

with |log2m| stages
• Degree of compression: |log2(m-1)|
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Transition Detector (TD)

Transition-Count Compression

• Sensitive to the order of bits

• Does not guarantee detecting all single-bit errors

• Theorem 1: In an arbitrary m-bit sequence, the 
probability of a single-bit error being masked is 
(m-2)/2m

• Theorem 2: Masking probability for transition-
count compression for a combinational circuit 
approaches (πm)-1/2
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Transition-Count Compression

• Theorem 3: Let T be single-fault test for irredundant 
single-out circuit C. Let T0(T1) be all tests in T 
producing output 0(1). Construct test sequence X = 
t(1) t(2)… t(p):

– X contains every element in T

– X is alternating sequence of tests from T0 and T1. If |T0| 
≥ |T1|, t(1) є T0, otherwise t(1) є T1. If t(i) є Td, select 

t(i+1) є Td ̄ for 1 ≤ i ≤ p -1

– Resulting sequence is a single-fault transition-count (TC) 
test for C
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3. Parity-Check Compression

• Signature: p(R) = parity of circuit response

• Compressor: simple parity checker (LFSR)
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Parity-Check Compression

• Initial state of DFF is 0, signature is 0 if parity is 
even, 1 if parity is odd

• Probability of masking approaches 1/2

• Extension to multiple-output circuits: 

– Use multi-input XOR gate

– Use separate parity checker for each output
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4. Syndrome Testing

• Uses exhaustive testing: applying all 2n test vectors

• Signature (syndrome) S: normalized number of 1’s 
in the output response stream, S = K/2n

• It is a special case of 1’s counting

• Examples:
– S(3-input AND) = 1/8

– S(3-input OR) = 7/8

• Syndrome S is a functional property of circuit 
implementing function f
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Syndrome Testing
• It is of interest because of the concept of syndrome 

testability
• Syndrome testability: any function f can be realized such 

that all single stuck-at faults are syndrome detectable
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OR S1 + S2 – S1S2

AND S1S2

NAND 1 – S1S2

NOR 1 – (S1 + S2 + S1S2)

XOR S1 + S2 – 2S1S2

Syndrome Testing
• Definition: A realization C of a function f is said to be 

syndrome-testable if no single stuck-at fault causes the circuit 
to have the same syndrome as the fault-free circuit

• Lemma: A two level irredundant circuit that realizes a unate
function (a function f is unate in xi if there exists a sum of 
product expression for f where xi appears only in 
uncomplemented form) in all its variables is syndrome 
testable

• Lemma: Every two-level irredundant combinational circuit 
can be made syndrome testable by adding control inputs to 
the AND gates

• Lemma: Every fanout-free irredundant combinational circuit 
composed of AND, OR, NAND, NOR, and NOT gates is 
syndrome testable
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5. Signature Analysis

• Compression technique based on the 
concept of cyclic redundancy checking 
(CRC)

• Implemented using linear feedback shift 
registers (LFSRs), utilized for: 
–Generate pseudorandom sequences

–Compression of circuit out response, known 
as signature analysis
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Linear Feedback Shift Registers (LFSR)

• A generating function can be associated with an 
LFSR’s output sequence:

G(x) = a0 + a1 x + a2 x2 + … + am xm + …

{ am } = a0, a1, a2, … output sequence generated 
by LFSR

• Two types of LFSRs:
– External XOR

– Internal XOR
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LFSR Type 1: External XOR (autonomous 
circuit; clock is only input)
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Linear Feedback Shift Registers (LFSR)
• Note that:

• Operation of the LSFR can be defined by a 
recurrence relation:

• G(x) is a function of the initial state a-1,a-2,…,a1-n and 
the feedback coefficients c1,c2,…,cn
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Linear Feedback Shift Registers (LFSR)

• The denominator is the characteristic polynomial 
of sequence { am } and of the LFSR:

P(x) = 1 + c1 x + c2 x2 + … + cn xn

• Note again: characteristic polynomial and the 
initial states characterize the cyclic nature of the 
LFSR

• Reciprocal polynomial:

P*(x) = cn + cn-1 x + cn-1 x2 + … + c1 xn-1 + xn

P*(x) = xnP(1/x)
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Linear Feedback Shift Registers (LFSR)

• Given a characteristic polynomial, it is easy to 
implement a type 1 LFSR to realize it

• Associate xi with Qi, the P(x) can be read off 
directly from the diagram of the LFSR

• Associate xi with Qn-i and label input of first FF as 
Q0, then P*(x) can be read off directly from the 
diagram of the LFSR
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Type 1, external XOR
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Type 1, external XOR
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Periodicity of LFSR

• Theorem: If the initial state of an LFSR is zero 
except a-n = 1, then the LFSR sequence {am} is 
periodic with a period that is the smallest integer 
k for which P(x) divides (1-xk)

• If period is 2n-1 then LFSR generates a maximum 
length sequence

• In this case, the characteristic polynomial is 
called primitive polynomial
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Maximum -length Sequences

• Sequences generated by LFSR with primitive 
polynomial are called pseudorandom sequences

• Any string of 2n-1 consecutive outputs is called an m-
sequence:
– Number of 1’s in an m-sequence differs from the number 

of 0’s by one

– An m-sequence produces an equal number of runs of 1’s 
and 0’s

– One half of the runs have length 1, one forth have length 
2, one eighth have length 3, etc.

• Randomness of LFSR makes them good for 
generating test sequences in BIST circuits
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5. Single-Input LFSRs as Signature Analyzers
• Signature analyzer is a type 2 single-input LFSR
• Smallest degree of masking makes this approach most popular 

in practice. The structure of the LFSR distributes all possible 
input bit streams evenly over all possible signatures.

• Remainder left in the register (after completion of test) 
represents the signature
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Multiple-Input LFSR as Signature Analyzers: 
MISR

• Used for multi-output circuits
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LFSR as Signature Analyzers

• Signature analysis is the most popular method 
employed for test data compression because 
produces a small degree of masking

• One can decrease probability of masking by 
increasing the length of LFSR or changing the 
characteristic polynomial

• Functional registers are often modified to work 
as LFSR as well
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Summary

• Compression techniques are widely used, esp. 
because their use in self-testing techniques

• All Boolean functions can be implemented by a 
circuit that is syndrome testable

• Signature analysis is the most popular test data 
compression technique due to low error masking 
probability
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