Linear Feedback Shift Registers (LFSRs)

- Efficient design for Test Pattern Generators & Output Response Analyzers (also used in CRC)
 - FFs plus a few XOR gates

External Feedback LFSR

better than counter

· fewer gates

• higher clock frequency

Two types of LFSRs

External Feedback

Internal Feedback

higher clock frequency

Internal Feedback LFSR

D Q D Q D Q

Characteristic polynomial

- defined by XOR positions

 $-P(x) = x^4 + x^3 + x + 1$ in both examples

1

LFSRs (cont)

Characteristic polynomial of LFSR

- n = # of FFs = degree of polynomial
- XOR feedback connection to FF $i \Leftrightarrow$ coefficient of x^i
 - coefficient = 0 if no connection
 - coefficient = 1 if connection
 - coefficients always included in characteristic polynomial:
 - x^n (degree of polynomial & primary feedback)
 - $x^0 = 1$ (principle input to shift register)
- Note: state of the LFSR \Leftrightarrow polynomial of degree n-1
- Example: $P(x) = x^3 + x + 1$ $|x^0|$ $|x^1|$ $|x^2|$ $|x^3|$ $|x^3$

2

LSFRs (cont)

- An LFSR generates periodic sequence
 - must start in a non-zero state,
- The maximum-length of an LFSR sequence is 2^n -1
 - does not generate all 0s pattern (gets stuck in that state)
- The characteristic polynomial of an LFSR generating a maximum-length sequence is a *primitive* polynomial
- A maximum-length sequence is **pseudo-random**:
 - number of 1s = number of 0s + 1
 - same number of runs of consectuive 0s and 1s
 - -1/2 of the runs have length 1
 - -1/4 of the runs have length 2
 - ... (as long as fractions result in integral numbers of runs)

3

- Example: Characteristic polynomial is $P(x) = x^3 + x + 1$
- Beginning at all 1s state
 - 7 clock cycles to repeat
 - maximal length = 2^n -1
 - polynomial is primitive
- Properties:
 - four 1s and three 0s
 - 4 runs:
 - 2 runs of length 1 (one 0 & one 1)
 - 1 run of length 2 (0s)
 - 1 run of length 3 (1s)
- Note: external & internal LFSRs with same primitive polynomial do not generate same sequence (only same length)

LFSRs (cont)

- Reciprocal polynomial, $P^*(x)$
 - $-P^*(x) = x^n P(1/x)$
 - example: $P(x) = x^3 + x + 1$
 - then: $P*(x) = x^3 (x^{-3} + x^{-1} + 1) = 1 + x^2 + x^3 = x^3 + x^2 + 1$
 - if P(x) is primitive, $P^*(x)$ is also primitive
 - same for non-primitive polynomials
- Polynomial arithmetic
 - modulo-2 $(x^n + x^n = x^n x^n = 0)$

Addition/Subtraction $(x^5 + x^2 + 1) + (x^4 + x^2)$ x^5 x^2 1 + x^4 x^2 x^5 x^4 1 $= x^5 + x^4 + 1$

Multiplication
$$(x^{2} + x + 1) \times (x^{2} + 1)$$

$$x^{2} + x + 1$$

$$\times x^{2} + x + 1$$

$$x^{2} + x + 1$$

$$x^{2} + x + 1$$

$$x^{4} + x^{3} + x^{2}$$

$$x^{4} + x^{3} + x + 1$$

Division $x^{2} + x + 1 \\ x^{2} + 1 \overline{\smash)x^{4} + x^{3} + x + 1} \\ \underline{x^{4} + x^{2}} \\ \underline{x^{3} + x^{2} + x + 1} \\ \underline{x^{3} + x} \\ x^{2} + 1 \\ \underline{x^{2} + 1} \\ 0$

5

LFSRs (cont)

- Non-primitive polynomials produce sequences $< 2^{n}-1$
 - Typically primitive polys desired for TPGs & ORAs
- Example of non-primitive polynomial

$$-P(x) = x^3 + x^2 + x + 1$$
External Feedback LFSR

D Q D Q D Q CK CK

Internal Feedback LFSR

6

LFSRs (cont)
• Primitive polynomials with minimum # of XORs

Degree (n)	Polynomial
2,3,4,6,7,15,22	$x^{n} + x + 1$
5,11,21,29	$x^n + x^2 + 1$
8,19	$x^n + x^6 + x^5 + x + 1$
9	$x^n + x^4 + 1$
10,17,20,25,28	$x^{n} + x^{3} + 1$
12	$x^n + x^7 + x^4 + x^3 + 1$
13,24	$x^n + x^4 + x^3 + x + 1$
14	$x^n + x^{12} + x^{11} + x + 1$
16	$x^n + x^5 + x^3 + x^2 + 1$
18	$x^{n} + x^{7} + 1$
23	$x^{n} + x^{5} + 1$
26,27	$x^n + x^8 + x^7 + x + 1$
30	$x^n + x^{16} + x^{15} + x + 1$