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Traditional CMOS Circuits
(think of application specific integrated circuits, ASICs)
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cannot be changed!
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Once fabricated:

» Does not implement a specific
circuit functionality!

« Can be (re)programmed or
configured to implement any
desired circuit! 4




ASIC vs. FPGA

ASIC
Application Specific
Integrated Circuit

* designed all the way
from behavioral description
to physical layout

* designs must be sent
for expensive and time
consuming fabrication
in semiconductor foundry

FPGA
Field Programmable
Gate Array

« no physical layout design;
design ends with
a bitstream used
to configure a device

* bought off the shelf
and reconfigured by
designers themselves

Which way to go?

ASICs
e N
High performance
\ /
4 N
Low power
S J
4 )
Low cost in
high volumes

FPGAs

Off-the-shelf

Low development cost

Short time to market

Reconfigurability
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Why FPGAS?

® Custom ICs are very expensive to develop, and delay introduction of
product to market (time to market) because of increased design time.

® Note: need to worry about two kinds of costs:
¢ 1. cost of development, called non-recurring engineering (NRE)
¢ 2. cost of manufacture

¢ A tradeoff usually exists between NRE cost and manufacturing costs

total A __-—"FPGAS

costs T

- B
Ly ASICs

- NRE
N~

number of units manufactured (volume)

Applications of FPGAs

= |Implementation of random logic
¢ easier changes at system-level (one device is modified)
¢ can eliminate need for full-custom chips

= Prototyping

¢ ensemble of gate arrays used to emulate a circuit to be
manufactured

® get more/better/faster debugging done than possible with
simulation
= Reconfigurable hardware
® one hardware block used to implement more than one function
¢ functions must be mutually-exclusive in time
® can greatly reduce cost while enhancing flexibility
= Special-purpose computation engines
® hardware dedicated to solving one problem (or class of problems)
® accelerators attached to general-purpose computers




Applications of FPGAs

* Early on, used to serve as “glue logic” and for prototyping.

Now? Everywhere!

— Communications, software-defined radio, digital signal processing,
ASIC prototyping, computer hardware emulation, medical
imaging, computer vision, automotive, speech recognition,
cryptography, bioinformatics, financial, bitcoin, ...

— https://www.intel.com/content/www/us/en/industries/overview.
html

— https://www.xilinx.com/applications.html

— https://www.xilinx.com/about/customer-innovation/aerospace-
and-defense/mars-exploration-rovers.html

— HW accelerators in datacenter servers (Intel purchased Altera for
$16 billion, AMD purchased Xilinx for $35 billion).

Major FPGA Vendors

SRAM-based FPGAs

= Altera Corp. ($16B Intel 2015)} Share about 90% of the
= Xilinx Inc. ($30B AMD 2020) market

= Atmel ($3.6B Microchip 2016)

= Lattice Semiconductor

Flash & antifuse FPGAs
= Actel Corp.
= Quick Logic Corp.
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Xilinx FPGA Families

= Old families
¢ XC3000, XC4000, XC5200
¢ Old 0.5um, 0.35um and 0.25um technology. Not recommended for modern

designs.
= High-performance families
® Virtex (220 nm) VY IRTEX
Virtex-E, Virtex-EM (180 nm) ‘v

.
® Virtex-ll, Virtex-Il PRO (130 nm)
® Virtex-4 (90 nm)
.
.

Virtex-5 (65 nm)
Virtex-6
= Low Cost Family
¢ Spartan/XL — derived from XC4000
® Spartan-Il — derived from Virtex SPARTAN'
® Spartan-lIE — derived from Virtex-E
® Spartan-3 (90 nm)
.
.
.
.
.

=~ SPARTAN:II
Spartan-3E (90 nm) — logic optimized a2 - =
Spartan-3A (90 nm) — I/O optimized . o
Spartan-3AN (90 nm) — non-volatile 2l

Spartan-3A DSP (90 nm) — DSP optimized
Spartan-6

11

Zynqg-7000

= Based on the Xilinx All programmable SoC architecture; 28nm
technology node

= ARM dual-core Cortex-A9 MPCore processors

= Fixed processing system that can operate independently from the
programmable logic

= Processor boots on reset like any processor-based device or ASSP

= Processor acts as “system master” and controls the configuration of
the programmable logic enabling full or partial reconfiguration of the

programmable logic during operation

= Standard development flows providing a familiar programming
environment for software developers

= Additional documentation and resources:
® http://www.xilinx.com/products/silicon-devices/soc/zyng-7000.html
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Intel Altera FPGA Families

® High & Medium Density FPGAs

= Stratix™ II, Stratix, APEX™ Il, APEX
20K, & FLEX® 10K

¢ Low-Cost FPGAs
= Cyclone™ & ACEX® 1K -

® FPGAs with Clock Data Recovery @ﬂxm
= Stratix GX & Mercury™

® CPLDs
= MAX® 7000 & MAX 3000

¢ Embedded Processor Solutions Cyclone:@
= Nios™, Excalibur™

¢ Configuration Devices
= EPC

Stratic Il

Stratix
GX
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Altera: Cyclone V

= Extends the Cyclone FPGA series

= Wide spectrum of general logic
applications

= Up to 300,000 logic elements (LES)

= Additional documentation and resources:

® https://www.altera.com/products/fpga/cyclone-
series/cyclone-v/features.html
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Cyclone V Key Architectural Features

6.144-Gbps —— HPS IO
Transceivers
ALMs and
- — ARM Cortex-A%
Distributed Memory MPCore HPS
PLLa — M10K Embedded
Memory Blocks.
6144Gbps
Transceivers PGS Variable-Precision
Digital Signal Processing
(DSP) Hard IP Blocks
Hard IP Blocks for
PCle Gen 2 and —— Up to 560 User /O Pins
PCle Gen1 ————
Two CorefTransceiver
External Memaory ———— Power Regulators
Interface Controllers Required (1.1V, 2. 5V)
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Cyclone V Devices

Cyclone V Device Variants and Packages

Table 3: Device Variants for the Cyclone V Device Family

[ | owcipin

Cyclone V E Optimized for the lowest system cost and power requirement for a wide spectrum of
general logic and DSP applications

Cyclone V GX Optimized for the lowest cost and power requirement for 614 Mbps to 3.125 Gbps
transceiver applications

Cyclone V GT The FPGA industry’s lowest cost and lowest power requirement for 6.144 Gbps

- transceiver applications
v

A)
Cyclond VSE ;| 5oC with integrated ARM-based HPS
~ b

Cyclone V' SX SoC with integrated ARM-based HPS and 3.125 Gbps transceivers

Cyclone VST SoC with integrated ARM-based HPS and 6.144 Gbps transceivers

16



Table 10: Maximum Resource Counts for Cyclone V SE Devices

Memr.ber Lade
Resource R
I I R I
40 8

Logic Elements (LE) (K} 25 110
ALM 9434 15,094 32075 41,509
Register 37,736 60,376 128,300 166,036
Memory MI10K 1,400 2,700 3,970 5,570
(Kb) MLAB 138 231 480 621
Variable-precision DSP 36 84 87 112
Block
18 x 18 Multiplier 72 168 174 224
FPGA PLL 5 5 6 [
HPS PLL 3 3 3 3
FPGA GPIO 145 145 288 288
HPS /O 181 181 181 181
Transmitter 32 32 72 72
LVDS
Receiver 37 37 72 72
FPPGA Hard Memory 1 1 1 1
Controller
HPS Hard Memory 1 1 1 1
Controller
ARM Cortex-A9 MPCore Single- or Single- or Single- or dual- Single- or dual-core
Processor dual-core dual-core core

Logic Element (LE)

= The smallest unit of logic located in a LAB of all Altera
devices supported by the Quartus software.
= Logic element (LE) is also generally known as a logic cell.
= In supported device (Arria series, Cyclone series, and
Stratix series) family devices, a logic element consists of:
® a four-input LUT 1
® a programmable register
® a carry chain
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Adaptive Logic Module (ALM)

= Basic building block of supported device (Arria
series, Cyclone V, Stratix IV, and Stratix V)
families
= Contains among others:
® two or four register logic cells
® two combinational logic cells
® two dedicated full adders
® acarry chain
® aregister chain
= https://www.intel.com/content/www/us/en/docs/prog

rammable/683152/24-1/adaptive-logic-module-
alm.html
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8-input Adaptive Logic Module (ALM)

FPGA Device
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Figure 11: HPS with Dual-Core ARM Cortex-A8 MPCore Processor
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DE1-SoC Board

= $175 USD (academic)

= FPGA Device
® Cyclone V SoC 5CSEMA5F31C6 Device
® Dual-core ARM Cortex-A9 (HPS)
¢ 85K Programmable Logic Elements
® 4,450 Kbits embedded memory
¢ 6 Fractional PLLs
¢ 2 Hard Memory Controllers

= Built-in USB Blaster for FPGA programming

= http://www.terasic.com.tw/cgi-
bin/page/archive.pl?Language=English&CategoryNo=2
05&No0=836&PartNo=2

22
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FPGA Architecture — General
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FPGA Architecture — Detail

Output Connec!

on Block

Programmable Routing

Fous Switch
r ‘<~ 3
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1) Configurable Logic Block (CLB)

> Think of LUT as of memory

that stores truth table of any

Boolean function of 4 inputs!

> The four inputs represent the

“address” from where to read from

this memory! o
INPUTS

Logic Block

set by configuration
<" bit-stream

I

4-LUT

—>» OUTPUT

= 4-input look-up table (LUT)
® Implements combinational logic functions (essentially store
truth table of the function)

® How do we implement LUT’s?

= Register

4-input "look up table"

® QOptionally stores output of LUT

26

26
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How could you build a generic Boolean
logic circuit? Memories as LUTs

memory
2N words
N-bit |
address
!
word

1-bit memory to
hold boolean
value

Address is vector
of boolean input
values

Contents encode
a boolean function
Read out logical
value (col) for
associated row

27
LUT as general logic gate
= An n-LUT as a direct implementation Example: 4-lut
of a function truth-table. INPUTS|
« Each latch location holds the value ~ 9990 | F(0.0,0,0) =— store in 1st atch
- . 0001 | F(0,0,0,1) =— storein 2nd latch

of the function corresponding to one 0010 | F(0,0.1.0) —

input combination. 0011 F(O‘Oylyl) -
Lo 0011

Example: 2-LUT 0100 .
INPUTS| AND OR 0101 :
00| 0 O 0110
010 1 0111
10(o0 1 *°*°* 1000
unii 1 1001
1010
Can be used to implement any Jl_,?ﬂ
function of 2 inputs. ]_18(1)
How many of these are there? 1110
How many functions of n inputs? 111
28
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LUT as general logic gate

implementation
Each LUT can
implement any

function of
4 inputs
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5-Input functions implemented using two LUTs

ouT

r A

r A

0/ 000000 d-d-d

000000010101010&

Ghieexl~

0/ 0/ 0/d0do0 o000
00000000
0000HHHH0000 -

00000000 -d-d-ddd-d-

Yooooooooooooooo

00/ d 0000 oo
00/ H 000000
0000HHHHO0O0O0O0H
00000000 ddd*dddd-d

HHH oA o
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Recall: Multiplexer/Demultiplexer

= Multiplexer: route one of many inputs to a single

output
= Demultiplexer: route single input to one of many
outputs
l lcontrol l lcontrol J l l {
*} é: = —
multiplexer demultiplexer 4x4 switch

31

Multiplexers/Selectors: to implement logic

= 2:1mux: Z=A'lI0+All

= 4 1mux: Z=A'B'I0O+ABIL+AB'I12+ABI3

= 81mux: Z=ABC'lI0+ABCI1+ABC'I2+ABCI3 +
AB'C'l4 + AB'CI5 + ABC'l6 + ABCI7

10— 4~ mux | %

10— 12 m:.|x —Z 16—
11—. z 3 17—

32



Multiplexers as LUTs

= 21 multiplexer implements any function of n variables
¢ With the variables used as control inputs and
¢ Data inputs tied to O or 1
® In essence, a look-up table

= Example:

® F(A,B,C) =m0 + m2 + m6 + m7
= A'B'C' + ABC' + ABC' + ABC
= A'B'(C') + A'B(C") + AB'(0) + AB(1)

> F

rrOoOOOROR
~No oA wNE O
©
=
<
C
x

S2 S1 SO

[T

A B C
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Cascading Multiplexers

= Large multiplexers implemented by cascading smaller

ones
10— 8:1
n—p 41 mux alternative
2P mux T implementation
13— .
— 21 | 7 10_L—>9q 8:1
L mux n : :
14 il —L_mux mux
15— :
16| mu = «»E1
17 —L_mux 4:1 .,
| 4_| mux
B C A 5| nzwlx

control signals B and C simultaneously choose
one of I0, I1, I2,I3 and one of I4,1I5,16,I7 16 ||
17 |

3N
c =

control signal A chooses which of the
upper or lower mux's output to gate to Z

34
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4-LUT Implementation

INPUTS
‘ ‘ ‘ ‘ = n-bit LUT is implemented asa 2" x 1
ac memory:
® Inputs choose one of 2"memory locations.
latch ® Memory locations (latches) are normally
loaded with values from user’s configuration
16x1 bit stream.
16 — OUTPUT ° .
mux Inputs to mux control are the CLB inputs.
= Result is a general purpose “logic gate”
® n-LUT can implement any function of n
inputs!
® Example: 10—
n— L L,
latch Latches programmed as part 270 z
of configuration bit-stream 3 T T
AB
35
35

2) Basic I/0 Block (IOB) Structure

Three-State

FF Enable EC Three-State
Clock * Control

Set/Reset * L 4

Output *
FF Enable®

Output Path

Direct Input<
FF Enable

Registerede{Q D
Input EC

SR

Input Path

36



IOB Functionality

= |OB provides interface between the package pins

and CLBs

= Each IOB can work as uni- or bi-directional 1/0
= Qutputs can be forced into High Impedance

= |nputs and outputs can be registered
¢ advised for high-performance 1/0

= Inputs can be delayed

37

3-a) Routing Resources: Interconnects

Logic blocks embedded in a ‘sea’
of connection resources

CLB = logic block cie
0B = 1/O buffer

ey X
PSM = programmable 153! mi
switch matrix (switch block) i
333 cLe 2 cLe 33 cLe
Interconnections critical I . _JL _J . JL
® Transmission gates on paths b3 asess: i’:’:’i ':;::X [psmi[ D | lesm| 3T
= Flexibility S=sd X
= Connect any LB to any other I . H H ]
but
X Much slower than connections = = =

within a logic block Ditcct Connections

—— Double lines

X Much slower than long lines on = tomires
an ASIC

38
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Comnection Box:
connects channel wires
to the i/o pins of CLBs.

Switch Box:

allow wires to switch
between vertical and
horizontal wires.

- L

e 12

j -
2N

box

s c fm / l.ll
Tl Connection| ' [T* &
» <lo

\ _4(' "
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3-b) Routing Resources: Switch and Connection Boxes

Switch
N, box
kY
ah
']
2
4

s

.

011

39
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3-c) Routing Resources: Switch Blocks
“Black Pl [:«
_---' 'l‘fswdung_.\‘ X
= Block A2 Block | TH<
7 ‘
~ ﬂi i y T
L ’ /r
CLB (11
Blo(‘k 3 Bl:c'k % : X1
|”” ';:m": m—q‘\\'ln programmable switch Tl .»-*"/ i
witc Segoxnt
Control = Control E\‘l
Configuration | -
sl \&]/
40
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connection black
1'1 . programmable switch
i B@8d witch point
I | 3. / B
i [ i T i P
switch point U ! \_,\:< \
‘( ! ‘Hk‘ ; E// L \\7[,"
- Py Uy ; -',
B | - [+ wire segment Connection to Output of CLB
irwwul Irwreral
| Pasd
ot [ e i
~.
switch
Loeic Block —————pm=
L] T w Cférinuit\nn
oC]
Routing Track —_— A
[’X - Isolation Buffer
Connection to Input of CLB ~ “*
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Example: SRAM-type FPGA

Logie Cell |

SRAM

— 1D g

Interconnection
Lodic Cell
ir: BRAM —

Logic Call

’

Lagic Cell

42
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Configuring an FPGA

= Configuration takes ~ secs

JTAG Port

= Millions of SRAM cells holding LUTs and Interconnect Routing info
= Volatile Memory. Loses configuration when board power is turned off
= Keep Bit Pattern describing the SRAM cells in non-Volatile Memory

Configuration data in ——
Configuration data out 47

N @ = 1/O pin/pad
Programming
Bit File (1] = sRam cel

JTAG Testing

OooooDoooooo

Ooooooooooo

[}
[}
o
[}
[}
o
[}
[}
o
[}
[}
o
[}
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Overview

= FPGA Devices
® ASIC vs. FPGA
® FPGA architecture
= FPGA Design Flow
® Synthesis
¢ Place
® Route

44
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ASIC Digital IC Design Flow Vs.
FPGA Design Flow

Verilog RTL Coding

" Verilog™,
.. Netlist

Device Configuration

45
VHDL description (Your Source Files)
Functional simulation
[ Y I
[ S
1 Synthesis Post-synthesis simulation
(Y, 1M
L;;:‘Ln, ) |
1 Implementation o . i
Timing simulation
- Configuration . .
On chip testing
|
46

23



Logic Synthesis

VHDL description

Circuit netlist

architecture MLU_DATAFLOW of MLU is

signal AL:STD_LOGIC;
signal BL:STD_LOGIC;
signal Y1:STD_LOGIC;
signal MUX_0, MUX_1, MUX_2, MUX_3: STD_LOGIC;

begin
Al<=Awhen (NEG_A=0) else

B1<=Bwhen (NEG_B=0)else

Y<=Y1when (NEG_

MUX_0<=Aland BL;
MUX_1<=Al or B1;
MUX_2<=A1 xor BL;
MUX_3<=A1 xnor B1;

with (L1 & LO) select
Y1<=MUX_0when "00",
MUX_1 when 01",
MUX_2 when "10",
MUX_3 when others;

end MLU_DATAFLOW;

Inp_125-
not

o
not Y1;

ClozeB-

\nMZDA[)—"_\

Inp ID———_

\nv.MD:‘)]‘\
s

? o
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Circuit Netlist

Clock2-

Input0l
Input10

Inputd|

Input5—

Input6@—

Inpuﬂgﬂ
Input2 ] >
Input3@—
InputdE—
Input9—

T
8

Input?

o

—=0utputd

L

—0utputt
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Map

ping

Clock -

input10

LUTO

LUT4

Li %'—DF

Input1 LUT1 F
\npu(?g:}Dc

Input3m—

INpUtBE—
INputoms—

LUT2

Input]

InputsE—

INpUtBES—

LUT3

LUTS

FF1

5

@ —HZOutputd

)

Input?

@ ——=0utput1
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FPGA
Placement

CLB SLICES

51

Example placement (VPR tool)

nt. Cost 28.5384. Ghannel Factor: 100

52
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Example placement (ISE tool)

ject 2 Jsers/cm78/Documents,/Xiinx/projects/20: )_planahead/pr
Fle E6t Fow Tools Window Leyout View Hep Q- s
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4 Implementation @b 12013
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Routing

‘ Programmable Connections | ;- -

Clockm-
LUTO
Crenam 't N g
P

LUT1 J
oty
wputzm—_

L oup,

e |
ot~
opuos | P
ms— Y,
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Inguts s>

P

e ouput

InputdE—
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Example routing (VPR tool)

Routing succeeded with a channel width facterof 7.
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Example routing (VPR tool) —zoom

in

g ey Y g,
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i
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L r ] e
ra6s 5] s28 P
Routing succeeded with 2 channel wickh facto! of
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Xilinx FPGA Editor

----

57

Configuration

= Once a design is implemented, you must create a
file that the FPGA can understand
® This file is called a bitstream: a BIT file (.bit extension)

= The BIT file can be downloaded directly to the
FPGA, or can be converted into a PROM file
which stores the programming information

<&
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Summary

FPGAs are more and more prevalent!
They are here to stay!

They offer a flexible platform for increasingly
complex systems

Design automation tools (i.e., CAD tools) take
care of the entire design process from VHDL >
configuration bitstream file

59
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