
1

EECE-4740/5740 Advanced VHDL and FPGA Design

Lecture 3

Introduction to VHDL

Cristinel Ababei

Marquette University

Department of Electrical and Computer Engineering

Outline

▪ VHDL Overview

▪ VHDL Characteristics and Concepts

▪ Basic VHDL modelling

• Entity declaration

• Architecture declaration

▪ Behavioural vs. Structural description in VHDL

1

2

2

Typical design flow

Design conception

VHDLSchematic capture

DESIGN ENTRY

Design correct?

Functional simulation

No

Yes

No

Synthesis

Physical design

Chip configuration

Timing
Requirements met?

Timing simulation

Yes

VHDL overview

▪ What does VHDL stand for?

• Very High Speed Integrated Circuit (VHSIC) Hardware Description

Language

▪ VHDL is a formal language for specifying the behavior and structure of

a digital circuit

• Concurrent and sequential statements

• Machine-readable specification

• Man- and machine-readable documentation

▪ Initially developed under DOD auspices, later standardized as IEEE

standards 1076-1987, 1076-1993, & 1076-1164 (standard logic data

type)

▪ A concurrent language, initially aimed at simulation, later at synthesis

▪ Syntax similar to ADA and Pascal

▪ Verilog is another, equally popular, hardware description language

(HDL)

3

4

3

Hardware Description Languages

▪ Both VHDL and Verilog are hardware description

languages.

▪ They describe hardware!

▪ They are not software programming languages.

Application of HDL

▪ HDL offers design reuse capability

• The corresponding HDL model can be reused in several
designs/projects.

• Frequently needed function blocks (macros) are collected in model
libraries.

5

6

4

Range of use

Abstraction levels in Digital Design

▪ Behavioural level:

• Functional description of the design

• Easy to describe in VHDL

• Useful especially for simulation purposes

• May not necessarily be synthesizable

▪ Abstraction - description of different parts of a system.

▪ Abstraction level - only the essential information is
considered, nonessential information is left out.

7

8

5

Abstraction levels in Digital Design

▪ Register transfer level (RTL):
• Design is divided into combinational logic and storage elements

• Storage elements (Flip-Flops, latches, registers) are controlled by
a system clock

• Synthesizable

▪ Logic level:

• Design is represented as a netlist of interconnected logic gates
(AND, OR, NOT,...) and storage elements

▪ Layout level (not really relevant to VHDL discussion):

• Logic cells of target technology are placed on the chip and
connections are routed

• After layout is verified, the design is ready for the
manufacturing/fabrication

Information Content of Abstraction Levels

9

10

6

ENTITY entity_name IS

PORT (name_list : mode type);
END entity_name ;

Entity Declaration:
Names entity and defines interfaces between
entity and its environment.

ARCHITECTURE body_name OF entity_name IS

-- declarative_statements
BEGIN

-- activity_statements
END body_name;

Architecture Body:
Establishes relationship between inputs
and outputs of design.

▪ A VHDL Design Unit consists of:
1) Entity declaration

2) Architecture: description

VHDL design unit – a quick intro

1) Entity Declaration

entity entity-name is port (

 port-name-A: mode type;

 port-name-B: mode type;

 port-name-C: mode type;

 …

);

end [entity][entity-name];

▪ Names entity and defines interfaces between

entity and its environment.

11

12

7

▪ Each I/O signal in the entity statement is referred

to as a port.

▪ A port is analogous to a pin on a schematic.

▪ A port is a data object.

▪ Can be assigned values.

▪ Can be used in expressions.

Port

▪ The mode describes the direction in which data

is transferred through a port.

▪ There are 4 different modes:

Mode

Mode Description

in Data only flows into the entity (input)

out Data only flows out of the entity (output)

inout Data flows into or out of the entity (bidirectional)

buffer Used for internal feedback

13

14

8

▪ VHDL is a strongly typed language

▪ Data objects of different types cannot be assigned to one another

without the use of a type-conversion function.

▪ There are two broad categories of data types:

▪ Scalar - stores a single value

▪ Composite - stores multiple values

▪ VHDL data types include:

Type

bit

boolean

integer

character

std_ulogic

std_logic

bit_vector

string

std_ulogic_vecto
rstd_logic_vector

scalar

composite

▪ The most useful types for synthesis and simulation, provided by the IEEE

std_logic_1164 package:

▪ std_logic

▪ std_ulogic

▪ std_logic_vector

▪ std_ulogic_vector

▪ See Appendix A for difference between std_logic and std_ulogic

▪ IEEE Standard Logic Types

▪ Use of two-valued logic (bit and bit_vector) is generally not sufficient to

simulate digital systems.

▪ In addition to 0 and 1, Z (high-impedance), X (unknown), and U

(uninitialized) are often used in digital system simulation.

▪ The IEEE standard 1164 defines the std_logic type that has nine values:

▪ 0, 1, Z, X, U, W, L, H, -

Type

15

16

9

Entity Declaration - example

entity FULL_ADDER is
 port (
 A, B, Cin: in std_logic;
 S: out std_logic;
 Cout: out std_logic;
end FULL_ADDER;

2) Architecture Declaration

▪ Establishes relationship between inputs and

outputs of design.

architecture architecture-name of entity-name is

 [declarations]

begin

 architecture body

end [architecture][architecture-name];

17

18

10

▪ Several different models or styles may be

used in the architecture body including:

▪ Behavioral

▪ Dataflow

▪ Algorithmic

▪ Structural

▪ These models allow to describe the design

at different levels of abstraction.

Architecture body

▪ One or more architecture statements may

be associated with an entity statement.

▪ Only one may be referenced at a time.

▪ Declarations

▪ Signals and components.

▪ Architecture body

▪ Statements that describe the functionality of the

design (i.e., the circuit).

Architecture statement

19

20

11

Architecture Declaration – example

architecture Behavioral_or_Struct of FULL_ADDER is
begin
 S <= A xor B xor Cin;
 Cout <= (A and B) or (A and Cin) or (B and Cin);
end Behavioral_or_Struct;

Behavioral/Functional

Model

1. Behavioral (or Functional)

• Dataflow

• Algorithmic

2. Structural

3. RTL (can be seen as mix of structural

and behavioral)

Models/styles of description in VHDL

21

22

12

1) Behavioral description in VHDL

▪ Function can be modelled as a simple equation (e.g., i1+i2*i3) plus a
delay of 100 ns.

o <= transport i1 + i2 * i3 after 100 ns;

Behavioral description in VHDL

▪ Specify a set of statements to model the function,

or behavior, of the design.

▪ Dataflow: uses concurrent statements

• Concurrent statements:

▪ Are executed at the same time; they mimic the actual

hardware parallelism (processes, signal assignment)

▪ Order is unimportant

▪ Algorithmic: uses sequential statements

• Sequential statements:

▪ Are executed in sequence (if, case, loops – while, for –

assertion)

▪ Order is very important

23

24

13

Behavioral synthesis

▪ Advantages
• Easy to write HDL code; fewer lines of VHDL

code

• Useful especially for automatic generation of
state machines

• Faster simulation than RTL

▪ Disadvantages
• May not be synthesizable

2) Structural description in VHDL

▪ Specify a set of statements to instantiate and

interconnect the components necessary for the design.

▪ Components are defined separately.

▪ Signals are used to interconnect components.

▪ Advantages

• Helps to describe a design hierarchically

• Offers better control of circuit timing

• Allows user to focus design optimization efforts on specific parts

of design

▪ Disadvantages

• Requires knowledge of internal structure of design

• More VHDL code to write

25

26

14

Gate level in VHDL – an example/form of

structural description

▪ Contains a list of the gates components (e.g., ND2, NR2, AO6).

▪ Each single element of the circuit (e.g., U86) is instantiated (using
“port map”) as a component (e.g., ND2) and connected to
corresponding signals (n192, n191, n188).

3) RTL description in VHDL

▪ Most realistic circuits combine a control-path or controller

and a datapath to perform some computation

▪ In this case the description style in VHDL is closely related

to the so called RTL design methodology, in which

operations are specified as data manipulation and transfer

among a collection of registers

▪ For example, the use of the FSMD model is especially

recommended whenever the structure of the datapath is

important

▪ This description style in VHDL can be regarded as a

combination of behavioral and structural descriptions

27

28

15

FSM as an example of the simplest RTL description

in VHDL – recall your Digital Circuits class!

▪ Functional behaviour is modelled with registered process (clocked
process) and combinational process.

▪ RTL VHDL code contains some sort of structural information in
addition to the functional behaviour.

Mealy Machine Model

CLK

(FFs)

Next StatePresent/Current

State

Pseudo

Primary Inputs

(PPI)

Primary Inputs

(PI)

Pseudo

Primary Outputs

(PPO)

Primary Ouputs

(PO)

29

30

16

Moore Machine Model

Primary Ouputs

(PO)

Pseudo

Primary Outputs

(PPO)

Next StatePresent/

Current

State

Pseudo

Primary Inputs

(PPI)

Primary Inputs

(PI)

CLK

(FFs)

MEALY

Outputs

Next State(Current)

State

Primary

Inputs

CLK

(FFs)

Combined Mealy and Moore Machine Model

MOORE

Outputs

Z2

Z1

Depend only on current_state!

31

32

17

Example: simple combinational logic circuit

F

A

B

C

B

C

A
B

A

C

Entity

Architecture

Example: entity

33

34

18

Example: architecture #1

Behavioral/Functional

Model

Example: architecture #2

Behavioral/Functional

Model

35

36

19

Example: architecture #3

Example: architecture #3 (continued)

Structural

Model

37

38

20

VHDL Language & Syntax (General)

▪ Signal assignment: “ <= “

▪ User defined names:

• Letters, numbers, underscores

• Start with a letter

• No VHDL keyword may be used

• Case insensitive

▪ List delimiter: “ , “

▪ Statements are terminated by “ ; “ (may span multiple lines)

▪ Comments: “ -- “ till end of line

-- example of VHDL code
signal my_signal: bit; -- an example signal
my_signal <= '0', -- start with '0'

 '1' after 10 ns, -- and toggle
 '0' after 20 ns, -- every 10 ns
 '1' after 30 ns;

VHDL Language & Syntax (Identifier)

▪ Normal Identifier:

• Letters, numbers, underscores

• Case insensitive.

• The first character must be a letter.

• The last character cannot be an underscore.

• No two consecutive underscores.

• VHDL reserved words may not be used as
identifiers.

▪ Extended Identifier:

• Enclosed in back slashes

• Case sensitive

• Graphical characters allowed

• May contain spaced and consecutive
underscores.

• VHDL keywords allowed.

MySignal_23 -- normal identifier
rdy, RDY, Rdy -- identical identifiers
vector_&_vector -- X : special character
last of Zout -- X : white spaces
idle__state -- X : consecutive underscores
24th_signal -- X : begins with a numeral
open, register -- X : VHDL keywords

\mySignal_23\ -- extended identifier
\rdy\, \RDY\, \Rdy\ -- different identifiers
\vector_&_vector\ -- legal
\last of Zout\ -- legal
\idle__state\ -- legal
\24th_signal\ -- legal
\open\, \register\ -- legal

39

40

21

Legal and illegal identifiers

▪ Legal Identifiers:
▪ my_fancy_signal

▪ EE_459_500

▪ Sel6B

▪ Illegal Identifiers:
▪ _time_is_9am -- an identifier must start with a letter.

▪ 8thsemester -- an identifier must start with a letter.

▪ Homework#1 -- letter, digits, and underscore only.

▪ final_ _example -- two underscore in succession not allowed

▪ Entity -- keyword cannot be used as identifier

▪ Time_out_ -- last character cannot be an underscore.

VHDL Reserved Words

abs disconnect label package sla

access downto library port sll

after else linkage postponed sra

alias elsif literal procedure srl

all end loop process subtype

and entity map protected then

architecture exit mod pure to

array file nand range transport

assert for new record type

attribute function next register unaffected

begin generate nor reject units

block generic not rem until

body group null report use

buffer guarded of return variable

bus if on rol wait

case impure open ror when

component in or select while

configuration inertial others severity with

constant inout out shared xnor

is signal xor

41

42

22

VHDL information

▪ Recommended books on VHDL or the use of
VHDL:

• Peter J. Ashenden, The Student’s Guide to VHDL,
Morgan Kaufmann.

• Peter J. Ashenden, The Designer's Guide to VHDL,
Morgan Kaufmann.

• S. Yalamanchili, Introductory VHDL from Simulation to
Synthesis, Prentice Hall.

• P.P. Chu, RTL Hardware Design Using VHDL: Coding
for Efficiency, Portability and Scalability, Wiley-
Interscience, 2006.

▪ Useful websites – see the links provided at:

• http://www.dejazzer.com/ee478/links.html

Summary

▪ VHDL is a hardware description language

▪ It has syntax (structure) and semantics

(meaning)

▪ Entity and architecture(s) declaration

▪ Models/styles of description in HDL:

Behavioral, Structural, RTL

43

44

http://www.dejazzer.com/ee478/links.html

23

Appendix A: What’s the difference between
std_logic and std_ulogic?

▪ The library ieee.std_logic_1164 has two types

std_logic and std_ulogic
▪ To understand the difference, consider this circuit

where the blue signal line has more than one driver attached to it? (e.g., it’s a

bus)

▪ How do we set up our model so that the simulator knows the ‘rules’?

• which signal overrides the others

or

• how the signals combine together

Contending drivers

▪ Remember that VHDL knows nothing about the IEEE 1164

rules

• To VHDL, the only primitive operations are those of a

‘normal’ programming language

▪ addition, subtraction, etc.

▪ assignment

• It does distinguish between signal and variable assignment,

but only with respect to the timing of assignment of new values!

▪ ieee.std_logic_1164 is NOT part of the VHDL standard

• So, when two std_logic values are applied to the same

signal (i.e., wire), a VHDL simulator has to know that

▪ ‘1’ overrides ‘Z’, ‘U’, ‘X’, ‘H’, ‘L’, …

▪ ‘1’ and ‘0’ lead to ‘X’

▪ Etc.

45

46

24

Unresolved signals

▪ std_ulogic is an unresolved type

• It is an error to define a model in which two drivers can set the value of

an unresolved signal

because

• there is no resolution function associated with the signal that can be

invoked to determine which driver overrides the other

• It is defined simply:
TYPE std_ulogic IS (‘U’,‘X’,‘0’,‘1’,‘Z’,‘W’,‘L’,‘H’,‘-’);

i.e., it is an enumerated type with possible values: ‘U’, …

This says nothing about the behavior of std_ulogic signals

▪ Their behavior is encoded in the functions (and, or, …) that take

std_ulogic arguments

Unresolved signals

On the other hand,

▪ std_logic is a resolved type

• It is defined:
SUBTYPE std_logic IS resolved std_ulogic;

 Note that there is a function definition just preceding this type:

Thus resolved is a function that takes a vector of std_ulogic elements

and returns a value of std_ulogic type

▪ This function is called a resolution function

• It is called whenever two or more sources (signal assignments) drive a
std_logic signal

FUNCTION resolved(s: std_ulogic_vector)

 RETURN std_ulogic;

SUBTYPE std_logic IS resolved std_ulogic;

47

48

25

Resolution functions

▪ Any resolved signal (i.e., one that may be driven by two

sources) is defined by a type that has a resolution function

associated with it

• A resolved type is a subtype

▪ It can resolve a conflict of multiple instances of the parent type

• The name of the resolution function immediately precedes the name of

the type being resolved

• The resolution function’s

▪ argument is a vector of elements of the type being resolved

• The simulator will place the actual values to be resolved in this vector and call the

resolution function

e.g., with 3 drivers for a std_logic signal,

the argument to resolved might be (‘Z’, ‘H’, ‘1’)which should return ‘1’

▪ return value is the parent type

• It will determine which of the values of the parent type result when the vector of

signal values is applied

The std_logic type

▪ This is a resolved version of the std_ulogic type.

Like std_ulogic, a signal or variable of this type can

take on the following values:

• 'U': uninitialized. This signal hasn't been set yet.

• 'X': unknown. Impossible to determine this value/result.

• '0': logic 0

• '1': logic 1

• 'Z': High Impedance

• 'W': Weak signal, can't tell if it should be 0 or 1.

• 'L': Weak signal that should probably go to 0

• 'H': Weak signal that should probably go to 1

• '-': Don't care.

49

50

26

Implementation of resolution functions

▪ The simplest way to implement a resolution function uses

a table

e.g., for std_logic

TYPE std_logic_table IS ARRAY(std_ulogic,std_ulogic) OF

 std_ulogic;

CONSTANT resolution_table : std_logic_table := (

-- U X 0 1 Z W L H –

 (‘U’, ‘U’, ‘U’, ‘U’, ‘U’, ‘U’, ‘U’, ‘U’, ‘U’), -- U

 (‘U’, ‘X’, ‘X’, ‘X’, ‘X’, ‘X’, ‘X’, ‘X’, ‘X’), -- X

 (‘U’, ‘X’, ‘0’, ‘X’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’), -- 0

 (‘U’, ‘X’, ‘X’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’), -- 1

 (‘U’, ‘X’, ‘0’, ‘1’, ‘Z’, ‘W’, ‘L’, ‘H’, ‘X’), -- Z

 …);

Implementation of resolution functions

▪ The function resolved is now very simple

-- On entry, s will contain the actual values being driven

-- this signal

FUNCTION resolved (s: std_ulogic_vector)

 RETURN std_ulogic IS

 VARIABLE result : std_logic := ‘Z’; -- default, weakest

 BEGIN

 IF (s’LENGTH = 1) THEN RETURN s(s’LOW);

 ELSE

 FOR k IN s’RANGE LOOP

 -- Take each signal in turn and determine the result of

 -- combining it with the previous result

 result := resolution_table(result,s(k));

 END LOOP;

 END IF;

 RETURN result;

END resolved;

51

52

27

Writing resolution functions

▪ You may never need to!

▪ std_logic_1164 defines the most commonly needed

one!

But,

1. You may be using integer types instead of

std_logic_vector in a model of a processor for
• convenience

• speed in simulation
• …

▪ You will need to define a resolved integer type if your

model has a bus with multiple drivers in it
• You will need to have a convention for ‘disconnecting’ a driver, e.g., setting a driver

to emit 0 when it’s not driving the bus (where you would drive a ‘Z’ with

std_logic)

• You can also explicitly disconnect a driver with VHDL’s DISCONNECT statement

Resolution functions

2. You may have defined an abstract type

• You (correctly) don’t want to be bothered with

implementation details yet

• Your bus is a collection of signals (address, data,

command, etc); you have a type for each one; so, the

bus itself is defined as a VHDL RECORD

• The synthesizer will eventually convert it to logic for

you!

• …

• Again, you will need a resolution function

3. …

53

54

28

Simulation speed

▪ std_ulogic does not have a resolution function

associated with it

• It should use less simulation time (i.e., run faster) than std_logic

• With std_logic, the simulator may end up checking for (or calling) the

resolution function for every assignment

▪ For simulation purposes std_ulogic is recommended

wherever possible

• It may save simulation time

• std_logic is a subtype, so it is possible to convert between them

whenever necessary

• res_signal <= std_logic(unres_signal);

• However, lots of people stick to std_logic for different

reasons (laziness?, compatibility with IPs, etc.)

55

	Slide 1
	Slide 2: Outline
	Slide 3: Typical design flow
	Slide 4: VHDL overview
	Slide 5: Hardware Description Languages
	Slide 6: Application of HDL
	Slide 7: Range of use
	Slide 8: Abstraction levels in Digital Design
	Slide 9: Abstraction levels in Digital Design
	Slide 10: Information Content of Abstraction Levels
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: 1) Behavioral description in VHDL
	Slide 24
	Slide 25: Behavioral synthesis
	Slide 26
	Slide 27: Gate level in VHDL – an example/form of structural description
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: VHDL Language & Syntax (General)
	Slide 40: VHDL Language & Syntax (Identifier)
	Slide 41
	Slide 42: VHDL Reserved Words
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50: The std_logic type
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

