
1

EECE-4740/5740 Advanced VHDL and FPGA Design

Lecture 3

Concurrent and Sequential Statements

Cristinel Ababei

Marquette University

Department of Electrical and Computer Engineering

Overview

▪ Components → hierarchy

▪ Concurrency

▪ Sequential statements

1

2

2

Components

▪ Structural model: describe how it is composed
of subsystems

• Component declaration and instantiation

▪ A structural architecture describes the schematic
by defining the interconnection of components

▪ Simplest components: associated with design
entities describing AND, OR, etc. switching
algebra operations; logic gates basically

▪ Use component statement in structural
descriptions

Component declaration

▪ In a component declaration, all

module types, which will be used
in the architecture, are declared.

▪ Their declaration must occur

before the begin keyword of the
architecture statement.

▪ The port list elements of the
component are called local
elements, they are not signals

entity FULLADDER is
 port (A,B, CARRY_IN: in bit;
 SUM, CARRY: out bit);
end FULLADDER;

architecture STRUCT of FULLADDER is

 component HALFADDER
 port (A, B : in bit;
 SUM, CARRY : out bit);
 end component;

 component ORGATE
 port (A, B : in bit;
 RES : out bit);
 end component;

 signal W_SUM, W_CARRY1, W_CARRY2 : bit;

begin
. . .
end STRUCT;

3

4

3

Component instantiation → Hierarchy

▪ A module can be assembled out of several submodules →
hierarchical model description

▪ A purely structural architecture does not describe any functionality
and contains just a list of components, their instantiation and their
interconnections

The following is the FORMAT for declaring components.

 COMPONENT component_name

 PORT (clause) ;

 END COMPONENT;

Note the similarity between component declaration
statement and entity declaration statement. Both have a
header, port clause, and end statement.

This similarity is not coincidental. Components are virtual
design entities.

Component Declaration Format

5

6

4

Component Instantiation

▪ Component instantiations
occur in the statements part of an
architecture (after the keyword
"begin").

▪ The choice of components is
restricted to those that are
already declared, either in the
declarative part of the
architecture or in a package.

▪ The connection of signals to the
entity port:

• Default: positional
association, the first signal of
the port map is connected to
the first port from the
component declaration.

architecture STRUCT of FULLADDER is
 component HALFADDER
 port (A, B : in bit;
 SUM, CARRY : out bit);
 end component;

 component ORGATE
 port (A, B : in bit;
 RES : out bit);
 end component;

 signal W_SUM, W_CARRY1, W_CARRY2: bit;

begin -- statements part

MODULE1: HALFADDER
 port map(A, B, W_SUM, W_CARRY1);

MODULE2: HALFADDER
 port map (W_SUM, CARRY_IN,
 SUM, W_CARRY2);

MODULE3: ORGATE
 port map (W_CARRY2, W_CARRY1, CARRY);

end STRUCT;

Component Instantiation: Named Signal Association

▪ Named association:

• left side: "formals"
(port names from
component declaration)

• right side: "actuals"
(architecture signals)

• Independent of order in
component declaration

entity FULLADDER is
 port (A,B, CARRY_IN: in bit;
 SUM, CARRY: out bit);
end FULLADDER;

architecture STRUCT of FULLADDER is

 component HALFADDER
 port (A, B : in bit;
 SUM, CARRY : out bit);
 end component;
 ...
 signal W_SUM, W_CARRY1, W_CARRY2 : bit;

begin

 MODULE1: HALFADDER
 port map (A => A,
 SUM => W_SUM,
 B => B,
 CARRY => W_CARRY1);
 ...
end STRUCT;

7

8

5

 label : component_name

 [GENERIC MAP (association_list)]

 [PORT MAP (association_list)];

GENERIC MAP is optional if there are no generics declared within
the entity declaration of the instantiated component or there is no
need to override the declared generic.

PORT MAP describes how this actual component instance is
connected to the rest of the system.

Syntax of the Component Instantiation Statement

Write a VHDL description for the circuit. Use component
instantiation statement and an internal signal x.

Example 1

9

10

6

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

-- Entity declarations

ENTITY example1IS

 PORT (a, b, c : IN STD_LOGIC;

 d : OUT STD_LOGIC);

END example1;

ARCHITECTURE arch1 OF example1 IS

 COMPONENT and2

 PORT (p, q: IN STD_LOGIC;

 r : OUT STD_LOGIC);

 END COMPONENT;

 COMPONENT or2

 PORT (p, q: IN STD_LOGIC;

 r : OUT STD_LOGIC);

 END COMPONENT;

-- Declare signals for interconnect ions

 SIGNAL x : BIT;

BEGIN

 U1A : and2 PORT MAP (a, b, x);

 U2A : or2 PORT MAP (x, c, d);

END arch1;

-- These entity declarations may be done
-- in a separate file or package
-- AND gate entity
ENTITY and2 IS
 PORT (p, q : IN STD_LOGIC;
 r : OUT STD_LOGIC);
END and2;
ARCHITECTURE my_arch OF and2 IS
BEGIN
 r <= p AND q;
END my_arch;

-- OR gate entity
ENTITY or2 IS
 PORT (p, q : IN STD_LOGIC;
 r : OUT STD_LOGIC);
END or2;
ARCHITECTURE your_arch OF o2 IS
BEGIN
 r <= p OR q;
END your_arch;

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

-- entity declaration begins

ENTITY example1 IS

 PORT (a, b, c : IN STD_LOGIC;

 d : OUT STD_LOGIC);

END example1;

-- entity declaration ends. The PORT clause
declares signals {a, b, c, d} that interfaces the
module to the outside world.

11

12

7

ARCHITECTURE arch1 OF example1 IS

-- component declaration portion of architecture.

-- before a component is instantiated in a circuit, it must first be declared.

-- declared components: AND and OR gates with names "and2” and "or2”.

COMPONENT and2

 PORT (p, q : IN STD_LOGIC;

 r : OUT STD_LOGIC);

END COMPONENT;

COMPONENT or2

 PORT (p, q : IN STD_LOGIC;

 r : OUT STD_LOGIC);

END COMPONENT;

-- signals declaration portion of architecture.
-- declare signals to interconnect logic operators or modules.
-- our circuit has an internal signal named x which is used by
-- both components; this signal should also be declared prior
-- to its usage in the architecture body.

SIGNAL x : BIT;

-- component instantiation portion of architecture
-- component instantiation statement connects logic
-- operators or modules to describe the schematic or structure.

BEGIN

 U1A : and2 PORT MAP (a, b, x);

 U2A : or2 PORT MAP (x, c, d);

END arch1;

13

14

8

Example 2

Write a VHDL code for the given circuit. The inputs are
x1, x2, x3 and the output is f

Example 2: behavioural description

entity example2 is
 port (x1, x2, x3: in bit;
 f: out bit);
end example2;

-- “my_behavioral” is user defined
architecture my_behavioral of example2 is
begin
 f <= (x1 and x2) nor (not x2 and x3);
end my_behavioral;

15

16

9

Example 2: structural description
entity example2 is
 port (x1, x2, x3: in bit;
 f: out bit);
end example2;

architecture structure of example2 is
 component and is
 port (a, b: in bit, f: out bit);
 end component and;

 component nor is
 port (a,b: in bit; f: out bit);
 end component nor;

 component inv is
 port (a: in bit; f: out bit);
 end component inv;

 signal x2bar,u1aout,u5aout: bit;

 begin
 u1a: component and port map(x1,x2,u1aout)
 u2a: component inv port map(x2,x2bar);
 u3a: component nor port map(u1aout,u5aout,f);
 u5a: component and port map (x2bar,x3,u5aout);
 end structure;

▪ VHDL construct to pass
information into an entity and
component

▪ It cannot be modified inside
an architecture → so, it
functions somewhat like a
Constant (see later slides)

▪ Declared inside an
architecture declaration, just
before the port declaration

Generics

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity gen_add_w_carry is

generic(N: integer:=4);

port(

a, b: in std_logic_vector(N-1 downto 0);

cout: out std_logic;

sum: out std_logic_vector(N-1 downto 0)

);

end gen_add_w_carry;

architecture arch of gen_add_w_carry is

signal a_ext, b_ext, sum_ext: unsigned(N

downto 0);

begin

a_ext <= unsigned('0' & a);

b_ext <= unsigned('0' & b);

sum_ext <= a_ext + b_ext;

sum <= std_logic_vector(sum_ext(N-1 downto

0));

cout <= sum_ext(N);

end arch;

17

18

10

Example 3: Multiply-accumulator

A two-input multiply accumulator device: multiply two 16 bit inputs.
Internal signals are: reg_in1, reg_in2, mul, reg_mul, adder, accum.

Two serial-to-parallel registers u1 and u2 convert the input bit stream
of the data into a 16-wide data. Multiplier u3 sends its output to the
adder u5 via register u4.

LIBRARY WORK;

USE WORK.my_fancy_package.ALL;

ENTITY mac IS

 GENERIC (tco : time := 10 ns);

 PORT (

 in1, in2 : IN BIT_VECTOR (15 DOWNTO 0);

 clk : IN BIT;

 output : OUT BIT_VECTOR(31 DOWNTO 0)

);

END mac;

Assume for the moment that these components are found in a
package called my_fancy_package, located in the library WORK.

 More on packages and libraries later!

The USE statement makes all the components in this package
visible to our design.

19

20

11

ARCHITECTURE structure_is_cool OF mac IS
-- component declaration part, components include a register called reg,
-- an adder called adder, a multiplier called multiply, a buffer called buf

COMPONENT reg
 GENERIC (width : integer := 16);
 PORT (d : IN BIT_VECTOR (width-1 DOWNTO 0);
 clk : IN BIT;
 q : OUT BIT_VECTOR (width-1 DOWNTO 0));
END COMPONENT;

COMPONENT adder
 PORT (port1, port2 : IN BIT_VECTOR (31 DOWNTO 0);
 output : OUT BIT_VECTOR (31 DOWNTO 0));
END COMPONENT;

COMPONENT multiply
 PORT (port1, port2 : IN BIT_VECTOR (15 DOWNTO 0);
 output : OUT BIT_VECTOR (31 DOWNTO 0));
END COMPONENT;

COMPONENT buf
 PORT (input : IN BIT_VECTOR (31 DOWNTO 0);
 output : OUT BIT_VECTOR (31 DOWNTO 0));
END COMPONENT;

-- signals declaration portion of architecture

SIGNAL reg_in1, reg_in2 : BIT_VECTOR (15 DOWNTO 0);
SIGNAL mul, reg_mul, adder, accum : BIT_VECTOR (31 DOWNTO 0);

-- components instantiation and logic interconnection

BEGIN

 u1: reg GENERIC MAP(16) PORT MAP (in1, clk, reg_in1);
 u2: reg GENERIC MAP(16) PORT MAP (in2, clk, reg_in2);
 u3: multiply PORT MAP (reg_in1, reg_in2, mul);
 u4: reg GENERIC MAP(32) PORT MAP (mul, clk, reg_mul);
 u5: adder PORT MAP (reg_mul, accum, adder);
 u6: reg GENERIC MAP(32) PORT MAP (adder, clk, accum);
 u7: buf PORT MAP (accum, output);

END structure;

21

22

12

Overview

▪ Components → hierarchy

▪ Concurrency

▪ Sequential statements

Classification

▪ VHDL provides mainly two types/classes of statements
that can be used to assign logic values to signals.

• Concurrent Statements

▪ The term concurrent means that the VHDL statements are
executed only when associated signals change value. There is
no master procedural flow control, each concurrent statement
executes when driven by an event.

• Sequential Statements

▪ Most statements found in programming languages such as
BASIC, PASCAL, C, C++, etc. execute in a sequential fashion.
Sequential statements execute only when encountered by the
procedural flow of control and the textual order in which
statements appear determines the order in which they execute.

23

24

13

Concurrency

▪ VHDL concurrent statements execute in a concurrent fashion (all at
the same time, concurrently or simultaneously). Individual statements
execute only when “associated” signals change value.

▪ There is no master, procedural flow of control; each concurrent
statement execute in a nonprocedural stimulus/response.

ENTITY example1 IS
 PORT (x1, x2, x3 : IN BIT;
 f : OUT BIT);
END example1;

ARCHITECTURE logicFunc OF example1 IS
 SIGNAL a1, b2: BIT;

 BEGIN -- Concurrent signal assignment statements
 a1 <= x1 AND x2;
 b1 <= NOT x2 AND x3;
 f <= a1 NOR b1;
END logicFunc;

Concurrent

statements!

Concurrent Statements

▪ VHDL provides several types of concurrent
statements:

• Signal assignment statement

▪ Simple Assignment Statement

▪ Selected Assignment Statement

▪ Conditional Assignment Statement

• Component instantiation statement

• Generate statement

• Process statement (its declaration, not what

is inside the process!)

• Concurrent assertion statement

• Procedure statement

• Block statement

25

26

14

Signal assignments: data objects

▪ Data objects hold a value of specified type. They
belong to one of three classes:
• Constants

• Variables

• Signals

▪ Constants and variables are typically used to aid with
modelling the behaviour of the circuit

▪ Signals are typically used to model wires and flip-flops

▪ Must be declared before they are used

▪ A constant holds a value that cannot be changed within the design
description.

▪ Constant must be declared in Entity, Architecture, Process,
Package.
▪ A constant defined in a package can be referenced by any entity or

architecture for which the package is used.
▪ Local property: A constant declared in an

entity/architecture/process is visible only within the local
environment

▪ Example:
▪ constant RISE_TIME: TIME := 10 ns;
-- declares a constant RISE_TIME of type TIME, with a value of 10 ns
▪ constant BUS_WIDTH: INTEGER := 8;
-- declares a constant BUS_WIDTH of type INTEGER with a value of 8

Constants

27

28

15

▪ Symbolic constant above, N, used for defining ranges.
▪ Improves readability.
▪ Makes revising the code easy and less prone to errors.

architecture const_arch of add_w_carry is

constant N: integer := 4;

signal a_ext, b_ext, sum_ext: unsigned(N downto 0);

begin

a_ext <= unsigned('0' & a);

b_ext <= unsigned('0' & b);

sum_ext <= a_ext + b_ext;

sum <= std_logic_vector(sum_ext(N-1 downto 0));

cout <= sum_ext(N);

end const_arch;

Constants

Signals

▪ Signals represent or model logic signals or wires
in a real circuit. Signals can also represent the
state of a memory

▪ There are three places in which signals can be
declared in a VHDL code

– Entity declaration

– Declarative part of an architecture

– Declarative part of a package

29

30

16

Signals

▪ A signal has to be declared with an associated

type:

• SIGNAL signal_name : type_name;

▪ The signal’s type_name determines the legal
values that the signal can have and its legal use in
VHDL code

▪ Signal types:

• bit, bit_vector, std_logic, std_logic_vector, std_ulogic,
signed, unsigned, integer, numeration, boolean

Signals – Example 1

▪ SIGNAL Ain : BIT_VECTOR (1 TO 4);

▪ Note:

• The syntax “lowest_index to highest_index” is useful for
a multi-bit signal that is simply an array of bits.

• In the signal Ain, the most-significant (left-most) bit is
referenced using lowest_index, and the least-significant
(right-most) bit referenced using highest index.

▪ Example:

• The signal "Ain" comprises 4 bit objects.

• The assignment statement Ain <= "1010"

 results in: Ain(1) = 1, Ain(2) = 0, Ain(3) = 1, Ain(4) = 0

31

32

17

Signals – Example 2

▪ SIGNAL My_Byte: BIT_VECTOR (7 downto 0);

▪ Note:

• The signal “My_Byte" has eight bit objects.

• The assignment statement:

 My_Byte <= "10011000";

 results in: My_Byte(7)=1, My_Byte(6)=0,
My_Byte(5)=0, My_Byte(4)=1, My_Byte(3)=1,
My_Byte(2)=0, My_Byte(1)=0, My_Byte(0)=0

Simple Signal Assignment Statement

▪ A simple signal assignment statement is used
for a logic or an arithmetic expression

▪ General format is:
▪ Signal name <= Expression;

▪ <= : VHDL assignment operator.

▪ It is the only operator which can be used to
assign a waveform to a signal.

▪ Example:

f <= (x1 AND x2) NOR (NOT x2 AND x3);

33

34

18

Simple Signal Assignment Statement

ENTITY example1 IS
 PORT (x1, x2, x3 : IN BIT;
 f : OUT BIT);
END example1;

ARCHITECTURE logicFunc OF example1 IS

BEGIN

 -- Simple signal assignment statement

 f <= (x1 AND x2) NOR (NOT x2 AND x3);

END logicFunc;

Variables

▪ A VARIABLE, unlike a SIGNAL, does not necessarily
represent a wire in a circuit.

▪ Variables can be used in sequential areas only

• The scope of a variable is the process or the subprogram.

• A variable in a subprogram does not retain its value between calls.

▪ Variable assignment is immediate, not scheduled.

▪ More info later (during processes discussion).

35

36

19

▪Logical: not, and, or, nand, nor, xor, xnor

▪Arithmetic:
 Operator Definition

 + addition

 - Subtraction

 * Multiply

 / divide

 ** Exponentiation

 MOD modulus

 REM remainder

 & Concatenation

▪Relational:
 Operator Definition

 = equal

 /= not equal

 < less than

 <= less than or equal

 > greater than

 >= greater than or equal

Operators

Operator Definition

ABS Absolute Value

SLL Shift left logical

SRL Shift right logical

SLA Shift left arithmetic

SRA Shift right arithmetic

ROL Rotate left

ROR Rotate right

Miscellaneous Operators

37

38

20

Generate Statements

▪ Generate Statements: describe regular and/or slightly
irregular structure by automatically generating
component instantiations instead of manually writing
each instantiation.

• E.g., if we implement the three-state buffers for a 32-bit bus
using component instantiation statement, we will have to
instantiate the three-state buffer component 32 times. In such
cases, a generate statement is preferred.

▪ There are two variants of the generate statement:

• FOR GENERATE statement

▪ Provides a convenient way of repeating either a logic
equation or a component instantiation.

• IF GENERATE statement

Generate Statements Formats

▪ The syntax of GENERATE statement:

 Label : generation_scheme GENERATE

 [concurrent_statements]

 END GENERATE [label];

 Where generation_scheme:

 FOR generate_specification

 or

 IF condition

▪ The beginning delimiter: GENERATE.

▪ The ending delimiter: END GENERATE.

▪ A label is required for the generate statement and is optional when used
with the END GENERATE statement.

39

40

21

A 16-bit wide bus is to be connected to a 16-bit register.
Create such a register using a series of 1-bit FFs. Utilize
the GENERATE VHDL construct to do it.

LIBRARY work;

USE WORK.my_fancy_package.all;

ENTITY reg16 IS

 PORT (input : IN STD_LOGIC_VECTOR (0 to 15);

 clock : IN STD_LOGIC;

 output : OUT STD_LOGIC_VECTOR (0 to 15);

END reg16;

Example: 16-bit register

ARCHITECTURE bus16_wide OF reg16 IS

 COMPONENT dff

 PORT (d, clk : IN STD_LOGIC,

 q : OUT STD_LOGIC);

 END COMPONENT;

BEGIN

-- “i” is the counter and does not need to be

-- declared. It will automatically increase by 1

-- for each loop through the generate statement.

G1 : FOR i IN 0 to 15 GENERATE

 dff1: dff PORT MAP (input (i), clock, output(i));

END GENERATE G1;

END bus16_wide;

41

42

22

Overview

▪ Components → hierarchy

▪ Concurrency

▪ Sequential statements

Sequential Statements

▪ Executed according to the order in which they

appear.

▪ Permitted only within processes.

▪ Used to describe algorithms.

▪ There are six variants of the sequential

statement, namely:

• PROCESS Statement

• IF-THEN-ELSE Statement

• CASE Statement

• LOOP Statement

• WAIT Statement

• ASSERT Statement

43

44

23

Process Statement

▪ PROCESS statement:
• Basic building block for behavioral modeling of digital

systems.

• Concurrent shell in which sequential statement(s)
can be executed.
▪ Appears inside an architecture body, and it encloses other

statements within it.

▪ IF, CASE, LOOP, and WAIT statements can appear only
inside a process.

▪ All statements with a process are executed sequentially
when the process becomes active.

Process Statement Format

[Process_label] : PROCESS [(sensitivity_list)] [is]

 Process_declarative_region

BEGIN

 Process_statement_region

END PROCESS [Process_label]

▪ The optional label allows for a user-defined name for

the process.

▪ The keyword PROCESS is the beginning delimiter of the

process.

▪ The END PROCESS is the ending delimiter of the

process statement.

45

46

24

Process Statement Sensitivity List

▪ Sensitivity list: contains the signals that trigger
the process.

▪ The process statement begins to execute if any
of the signals sensitivity list contains an event.

▪ Once activated by a sensitivity list event, the
process statement executes statements in a
sequential manner.

▪ Upon reaching the end of the process,
execution suspends until another event occurs
from the sensitivity list.

 Process_declarative_region may include:

 - type declaration

 - constant declaration

 - variable declaration

(NOTE: no signal declaration)

 Process_Statement region may include:

 -- signal assignment statement

 -- variable assignment statement

 -- IF statement

 -- CASE statement

 -- LOOP statement

 -- WAIT statement

47

48

25

PROCESS (clock)

BEGIN

 -- toggles clock every 50 ns

 clock <= not clock after 50 ns;

END PROCESS;

▪ This process is sensitive to the signal "clock". When an
event occurs on clock, the process will execute.

▪ Within the process_statement_region of the process is a
simple signal assignment statement.

▪ This statement inverts the value of clock after 50 ns.

Example 1

Variables (see also Appendix A, at the end)

▪ Variables can be only defined in a process or subprogram.

• Variables are only accessible within this process.

▪ In a process, the last signal assignment to a signal is carried out when
the process execution is suspended. Value assignments to variables,
however, are carried out immediately.

▪ '<=' signal assignment

▪ ':=' variable assignment

architecture RTL of XYZ is

 signal A, B, C : integer range 0 to 7;

 signal Y, Z : integer range 0 to 15;

begin

 process (A, B, C)

 variable M, N : integer range 0 to 7;

 begin

 M := A;

 N := B;

 Z <= M + N;

 M := C;

 Y <= M + N;

 end process;

end RTL;

49

50

26

Summary

▪ Component instantiation facilitates hierarchical

structural VHDL description

▪ Concurrency is a big deal in VHDL

▪ Sequential statements → inside processes

Appendix A: Variables vs. Signals

▪ There are three main differences between variable and
signal assignments:

1)Syntax: for the variable assignment ':=‘, for the signal
assignment operator '<=‘

2)Timing: Variables are assigned immediately, while
signals are assigned at a future delta time.

3) Range: Variables are used for local processes and
signals are used to pass information among concurrent
statements.

51

52

27

Variables vs. Signals

M A

N B

Z A+B

Y C+B

C

M, N: variables
...

signal A, B : integer;

signal C : integer;

signal Y, Z : integer;

begin

 process (A, B, C)

 variable M, N: integer;

 begin

 M := A;

 N := B;

 Z <= M + N;

 M := C;

 Y <= M + N;

 end process;

...

▪ The 2nd adder input is connected to C

Variables vs. Signals

▪ Signal values are assigned after the process execution

▪ Only the last signal assignment is carried out
• M <= A; is overwritten by M <= C;

▪ The intermediate signals have to be added to the sensitivity
list, as they are read during process execution.

...

signal A, B : integer;

signal C : integer;

signal Y, Z : integer;

signal M, N : integer;

begin

 process (A,B,C)

 begin

 M <= A;

 N <= B;

 Z <= M + N;

 M <= C;

 Y <= M + N;

 end process;

...

M A

N B

Z M+N

Y M+N

C

M, N: signals

53

54

28

Use of Variables

▪ Variables are suited for the implementation of

algorithms.

▪ A variable behaves like you would expect in a

software programming language.

▪ They can be used for local storage inside

processes.

▪ Since all variables scope is only within the

current PROCESS where the variable is

declared, it is always necessary to assign

the final values of variables to signals if

they are used outside of the process.

Variables: Example

-- Parity Calculation

 entity PARITY is

port (DATA: in bit_vector(3 downto 0);

 ODD: out bit);

 end PARITY;

 architecture RTL of PARITY is

 begin

 process (DATA)

 variable TMP : bit;

 begin

 TMP := ‘0’;

 for I in DATA’low to DATA’high loop

 TMP := TMP xor DATA(I);

 end loop;

 ODD <= TMP;

 end process;

 end RTL;

▪ While a scalar signal can
always be associated with a
wire, this is not valid for
variables.

▪ In the example, FOR LOOP
is executed four times. Each
time the variable TMP
describes a different line of
the resulting hardware. The
different lines are the
outputs of the corresponding
XOR gates.

55

56

	Slide 1
	Slide 2: Overview
	Slide 3: Components
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Generics
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Signal assignments: data objects
	Slide 28: Constants
	Slide 29: Constants
	Slide 30: Signals
	Slide 31: Signals
	Slide 32: Signals – Example 1
	Slide 33: Signals – Example 2
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51: Summary
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

