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Overview

▪ Combinational circuits

• Multiplexer, decoders, encoders, adders, 

comparators

▪ Sequential circuits

• Regular sequential circuits

• Finite State Machines
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A VHDL Template for Combinational Logic

entity model_name is

      port( list of inputs and outputs );

end model_name;

architecture arch_name of model_name is 

begin

 concurrent statement 1

 concurrent statement 2 

 ... 

 concurrent statement N;

end arch_name;

2-to-1 Multiplexer
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LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY mux2to1 IS

 PORT ( w0, w1, s : IN STD_LOGIC;

  f  : OUT STD_LOGIC);

END mux2to1;

ARCHITECTURE dataflow OF mux2to1 IS 

BEGIN

 f <= w0 WHEN s = '0' ELSE w1;

END dataflow ;
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4-to-1 Multiplexer

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY mux4to1 IS

 PORT ( w0, w1, w2, w3: IN STD_LOGIC;

   s: IN STD_LOGIC_VECTOR(1 DOWNTO 0);

   f: OUT STD_LOGIC );

END mux4to1 ;

ARCHITECTURE dataflow OF mux4to1 IS 

BEGIN

 WITH s SELECT

  f <= w0 WHEN "00",

   w1 WHEN "01",

   w2 WHEN "10",

   w3 WHEN OTHERS;

END dataflow 
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2-to-4 Decoder
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LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY dec2to4 IS

 PORT (w : IN STD_LOGIC_VECTOR(1 DOWNTO 0);

              En : IN STD_LOGIC;

              y : OUT STD_LOGIC_VECTOR(3 DOWNTO 0) );

END dec2to4 ;

ARCHITECTURE dataflow OF dec2to4 IS

 SIGNAL Enw : STD_LOGIC_VECTOR(2 DOWNTO 0);

BEGIN

 Enw <= En & w ;

 WITH Enw SELECT

  y <= “0001" WHEN "100",

   "0010" WHEN "101",

   "0100" WHEN "110",

   “1000" WHEN "111",

   "0000" WHEN OTHERS;

END dataflow;
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4-bit Number Comparator: Unsigned

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

USE ieee.std_logic_unsigned.all ;

ENTITY compare IS

 PORT (A, B: IN STD_LOGIC_VECTOR(3 DOWNTO 0);

  AeqB, AgtB, AltB: OUT STD_LOGIC );

END compare;

ARCHITECTURE dataflow OF compare IS 

BEGIN

 AeqB <= '1' WHEN A = B ELSE '0';

 AgtB <= '1' WHEN A > B ELSE '0';

 AltB <= '1' WHEN A < B ELSE '0';

END dataflow;
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4-bit Number Comparator: Signed

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_signed.all;

ENTITY compare IS

 PORT (A, B: IN STD_LOGIC_VECTOR(3 DOWNTO 0);

  AeqB, AgtB, AltB: OUT STD_LOGIC );

END compare;

ARCHITECTURE dataflow OF compare IS 

BEGIN

 AeqB <= '1' WHEN  A = B ELSE '0';

 AgtB  <= '1' WHEN A > B ELSE '0';

 AltB  <=  '1'  WHEN A < B ELSE '0';

END dataflow;
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Tri-state Buffer
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ENTITY tri_state IS

PORT ( e: IN STD_LOGIC;

x: IN STD_LOGIC;

f: OUT STD_LOGIC);

END tri_state;

ARCHITECTURE dataflow OF tri_state IS

BEGIN

 f <= x WHEN (e = ‘1’) ELSE ‘Z’;

END dataflow;

Priority Encoder
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LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY priority IS

 PORT ( w: IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;

  y: OUT STD_LOGIC_VECTOR(1 DOWNTO 0) ;

  z: OUT STD_LOGIC ) ;

END priority ;

ARCHITECTURE dataflow OF priority IS

BEGIN

 y <= "11" WHEN w(3) = '1' ELSE 

  "10" WHEN w(2) = '1' ELSE

  "01" WHEN w(1) = '1' ELSE

  "00" ;

 z <= '0' WHEN w = "0000" ELSE '1' ;

END dataflow ;
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Most often implied structure

target_signal <= value1 when condition1 else

                 value2 when condition2 else

                   . . .

                 valueN-1 when conditionN-1 else

                 valueN;

When - Else

Value N

Value N-1

Condition N-1

Condition 2

Condition 1

Value 2

Value 1

Target Signal

…

Most often implied structure

with choice_expression select

   target_signal <= expression1 when choices_1,

                    expression2 when choices_2,

                        . . .

                    expressionN when choices_N;

With - Select - When

choices_1

choices_2

choices_N

expression1

target_signal

choice expression

expression2

expressionN
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Overview

▪ Combinational circuits

• Multiplexer, decoders, encoders, adders, 

comparators

▪ Sequential circuits

• Regular sequential circuits

• Finite State Machines

Sequential Circuits

▪ Regular sequential circuits

• Sequential circuits

• Storage elements: Latches & Flip-flops

• Registers and counters

▪ Circuit and System Timing 

▪ Finite State Machines (FSMs) 

• State tables & state diagrams
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Sequential circuits – general description

▪ A Sequential circuit contains:
• Storage elements: Latches or Flip-Flops 

• Combinational Logic: implements a multiple-output 
switching function
▪ Next state function: Next State = f(Inputs, State)
▪ Output function: two types
    Mealy: Outputs = g(Inputs, State)

           Moore: Outputs = h(State)

Combina-

tional Logic

Inputs Outputs

State
Next

state
Storage 

Elements

Latches

S (set)

R (reset)
Q

Q

Basic S-R latch

S

R

Q

C

Q

Clocked S-R latch

D
Q

C

Q

D latch

Basic S-R latch

Q
S (set)

R (reset) Q
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Edge-Triggered D Flip-Flop

▪ The change of Q is 
associated with the negative 
edge at the end of the pulse 
- negative-edge triggered 
flip-flop.
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Modelling of Flip-Flops

Library IEEE;

use IEEE.Std_Logic_1164.all;

entity FLOP is

   port (D, CLK : in std_logic;

         Q : out std_logic);

end FLOP;

architecture A of FLOP is

begin

  process

  begin

      wait until CLK’event and CLK=‘0’;

      Q <= D;

   end process;

end A;
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Direct Inputs

▪ At power-up or at reset, sequential 

circuit usually is initialized to a 

known state before it begins 

operation

• Done outside of the clocked behavior

of the circuit (i.e., asynchronously). 

• Direct R/S inputs 

▪ For the example flip-flop shown 

• 0 applied to R resets the flip-flop to the 

0 state

• 0 applied to S sets the flip-flop to the 1 

state

D

C

S

R

Q

Q

Positive Edge-triggered D Flip-flop with 

Asynchronous Set/Reset

library IEEE;

use IEEE.std_logic_1164.all;

entity ASYNC_FF is

   port (D, CLK, SETN, RSTN : in std_logic;

         Q : out std_logic);

end ASYNC_FF;

architecture RTL of ASYNC_FF is

begin

    process (CLK, RSTN, SETN)

    begin

        if (RSTN = `1`) then

              Q <= `0`;

        elsif SETN ='1' then

              Q <= '1';

        elsif (CLK’event and CLK = ‘1’) then

              Q <= D;

        end if;

   end process;

end RTL;
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Registers

▪ Register: the simplest storage component in a 
computer, a bit-wise extension of a flip-flop.

▪ Registers can be classified into
• Simple Registers

• Parallel-Load Registers

• Shift Registers

D3 Q
3

D2 Q
2

D1 Q
1

D0 Q
0

I3 I2 I1 I0

Q3 Q2 Q1 Q0
clk

Q3     Q2        Q1      Q0 

I3      I2          I1        I0 Clk

– A simple register consists of N 
flip-flops driven by a common 
clock signal. 

– Has N inputs and N outputs in 
addition to the clock signal.

Simple Registers
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I3 I2 I1 I0

Q3
Q2 Q1 Q0

clk

Clear

Preset

Q3    Q2      Q1      Q0 

I3     I2        I1         I0 
clk

clear

Preset

Register with asynchronous preset and clear

Library ieee;

USE ieee.std_logic_1164.all;

ENTITY simple_register IS

   GENERIC ( N : INTEGER := 4);

   PORT ( I : IN STD_LOGIC_VECTOR (N-1 DOWNTO 0);

          Clock, Clear, Preset : IN  STD_LOGIC;

          Q : OUT STD_LOGIC_VECTOR (N-1 DOWNTO 0));

END simple_register;

ARCHITECTURE simple_memory OF simple_register IS

BEGIN

PROCESS (Preset, Clear, Clock)

BEGIN 

 IF Preset = ‘0' THEN

   Q <= (OTHERS => ‘1');

 ELSIF Clear = '0' THEN

       Q <= (OTHERS => '0');

 ELSIF (Clock'EVENT AND Clock = '1') THEN

       Q <= I;

 END IF;

END PROCESS;

END simple_memory;
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Parallel Load Registers

▪ In the previous registers, new data is stored 

automatically on every rising edge of the clock. 

▪ In most digital systems, the data is stored for 

several clock cycles before it is rewritten. For 

this reason it is useful to be able to control 

WHEN the data will be entered into a register.

• Use a control signal called Load or Enable. This 

allows loading into a register known as a parallel-

load register.

Library ieee;

USE ieee.std_logic_1164.all;

ENTITY load_enable IS

  GENERIC ( N : INTEGER := 4);

  PORT ( D : IN STD_LOGIC_VECTOR (N-1 DOWNTO 0); 

         Clock, Resetn, load : IN STD_LOGIC;

         Q : BUFFER STD_LOGIC_VECTOR (N-1 DOWNTO 0));

END load_enable;

ARCHITECTURE rtl OF load_enable IS

   SIGNAL state : std_logic_vector(N-1 DOWNTO 0);

BEGIN

   PROCESS (Resetn, Clock) IS

   BEGIN 

 IF Resetn = '0' THEN

    state <= (OTHERS => '0');

 ELSIF (Clock'EVENT AND Clock = '1') THEN

    IF load = '1' THEN

  state <= D;

    ELSE

  state <= state;

    END IF;

 END IF;

   END PROCESS;

   Q <= state;

END rtl;
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Serial-in/Parallel-out Shift Register

Parallel Load Shift Register
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ARCHITECTURE cnt OF upcount IS

SIGNAL count : STD_LOGIC_VECTOR (N-1 DOWNTO 0);

BEGIN

PROCESS (Resetn, Clock)

BEGIN 

 IF Resetn = '0' THEN

  count <= ( OTHERS => ‘0’ ); 

  -- Use of others in aggregate makes your code generic. 

  -- Thus you won't have to replace all "00000000" with 

  -- "00" when you change your mind and vectors should 

  -- be only 2 bits wide.

 ELSIF (Clock'EVENT AND Clock = '1') THEN

  IF Enable = '1' THEN

   count <= count +1;

  ELSE

   count <= count;

  END IF;

 END IF;

END PROCESS;

Q <= count;

END cnt;

Library ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_unsigned.all;

ENTITY upcount IS

   GENERIC ( N : INTEGER := 4 );

   PORT ( Clock, Resetn, Enable : IN STD_LOGIC;

          Q: BUFFER STD_LOGIC_VECTOR (N-1 DOWNTO 0));

END upcount;

VHDL for Up-Counter

▪ Internal logic

• Incrementer: Q+0 or Q+1

▪ Contraction of a ripple carry 

adder with one operant fixed at 

000X

▪ Symbol for synchronous counter:

Synchronous Counters

Incrementer

C1

C2

C3

Symbol

CTR 4

EN

Q
1

Q
2

Q
3

CO

Q
0
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▪ Contraction of carry-lookahead adder
• Reduce path delays

• Called parallel gating

• Lookahead can be used on COs
and ENs to prevent long paths in
large counters

Synchronous Counters (Contd.)

Logic Diagram-Parallel Gating

EN

Q 0

Q 1

C1

Q 2

C2

C3

CO

Q 3

▪ Add path for input data D

• enabled for Load = 1

▪ Add logic to:

• When Load = 1 disable count logic

    (feedback from outputs)

• When Load = 0 and Count = 1 

    enable count logic 

D0 D

C

Q0

D1 D

C

Q1

D2 D

C

Q2

D3 D

C

Q3

Load

Count

Clock

Carry
Output CO

Counter with Parallel Load

Load Count Action

0 0 Hold Stored Value

0 1 Count Up Stored Value

1 X Load D

CTR4

Load

Count

D0

D1

D2

D3

Q0

Q1

Q2

Q3

CO
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BCD Counter

architecture Behavioral of bcd_counter is

 signal regcnt : std_logic_vector(3 downto 0);

begin

 count: process (reset, clk) is

 begin

    if ( reset='1' ) then

        regcnt <= "0000";

      elsif ( clk'event and clk='1') then

        regcnt <= regcnt+1;

        if (regcnt = "1001") then

     regcnt <= "0000";

        end if;

    end if;

   end process;

end Behavioral;

Overview

▪ Combinational circuits

• Multiplexer, decoders, encoders, adders, 

comparators

▪ Sequential circuits

• Regular sequential circuits

• Finite State Machines (FSMs)
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FSM types

• MEALY machine:

• Outputs are dependent 

on current state and 

inputs

Logic

Memory

State Next State

Inputs Outputs

Logic

Memory
Logic

State Next 

State

Inputs

Outputs

• MOORE machine:

• Outputs are dependent 

on current state only

Example 1

▪ Input:       x(t)

▪ Output:    y(t) 

▪ State:       (A(t), B(t)) 

▪ Output Function?

• y(t) = x(t)(B(t) + A(t))

▪ Next State Function?

• A(t+1) = A(t)x(t) + B(t)x(t)

• B(t+1) = A(t)x(t)

C

D Q

Q

C

D Q

Q'

y

x
A

A

B

CP

Next State

Output
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Example 1 (Contd.)

y(t) = x(t)(B(t) + A(t))
A(t+1) = A(t)x(t) + B(t)x(t)

B(t+1) = A(t)x(t)

0

0

0

0

1

1

1

0

▪ Where in time are inputs, outputs and states defined? 

Typical Design Procedure for Sequential Circuits

▪ Formulation: Construct a state table or state diagram

▪ State Assignment: Assign binary codes to the states

▪ Flip-Flop Input Equation Determination: Select flip-flop 
types, derive flip-flop input equations from next state 
entries in the table

▪ Output Equation Determination: Derive output equations 
from output entries in the table

▪ Optimization - Optimize the equations

▪ Technology Mapping - Find circuit from equations and 
map to flip-flops and gate technology

▪ Verification - Verify correctness of final design
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Example 2: Sequence Recognizer

▪ A sequence recognizer: produces an output ‘1’ 
whenever a prescribed pattern of inputs occur in 
sequence

▪ Steps:

• Begin in an initial state (typically “reset” state), when NONE of the 
initial portion of the sequence has occurred

• Add states 

▪ That recognize each successive symbol occurring 

▪ The final state represents the input sequence occurrence

• Add state transition arcs which specify what happens when a 
symbol not in the proper sequence has occurred

• Add other arcs on non-sequence inputs which transition to states

▪ The last step is required because the circuit must recognize the input 
sequence regardless of where it occurs within the overall sequence 
applied since “reset”

Example 2: Recognize 1101 as Mealy machine

▪ Define states for the sequence to be recognized

▪ Starting in the initial state ("A"):

▪ Finally, output 1 on the arc from D means the sequence has 
been recognized, 

• To what state should the arc from state D go? Remember:  1101101 ?

• The final 1 in the recognized sequence 1101 is a sub-sequence of 
1101.  It follows a 0 which is not a sub-sequence of 1101.  Thus it 
should represent the same state reached from the initial state after a 
first 1 is observed.

A B
1/0

C
1/0 1/1

D
0/0

1/1

DA B1/0
C

1/0 0/0
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Example 2: Recognize 1101 (Contd.)

▪ The other arcs are added to each state for inputs not yet listed.  
Which arcs are missing?

• State transition arcs must represent the fact that an input subsequence 
has occurred.  

• Note that the 1 arc from state C back to C implies that State C means two 
or more 1's have occurred.

C

1/1

A B
1/0 1/0

D
0/0

0/0

0/0 1/0

0/0

State
Present Next State

x=0     x=1
Output

x=0   x=1
A A       B 0        0
B A       C 0        0

C D       C 0        0

D A       B 0        1

▪ For Moore Model, outputs 
are associated with states. 
Arcs now show only state 
transitions 

▪ Add a new state E to 
produce the output 1
• State E produces the same 

behavior in the future as state 
B, but it gives a different output 
at the present time. Thus these 
states do represent a different 

abstraction of the input history.
▪ The Moore model for a 

sequence recognizer usually 
has more states than the 
Mealy model.

A/0 B/0 C/0 D/0

0

E/1

0

0

0

11

1

1
10

1/0

0/0

0/0

1/1

A B
1/0

C
1/0

D
0/0

0/0

Example 2: Recognize 1101 as Moore machine
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Example 2: Moore Model (Contd.)

A/0 B/0 C/0 D/0

0

E/1

0

0

0

11

1

1
10

Present 

State

Next State

x=0     x=1

Output

y

A A  B 0

B A  C 0

C D  C 0

D A  E 0

E A  C 1

VHDL code using 3 processes: sequential recognizer

library ieee;

use ieee.std_logic_1164.all;

entity seq_rec_MEALY is

 port (CLK, RESET, X: in std_logic;

       Z: out std_logic);

end seq_rec;

architecture process_3 of seq_rec_MEALY is

  type state_type is (A, B, C, D);

  signal state, next_state: state_type;

begin

1/0

0/0

0/0

1/1

A B
1/0

C
1/0

D
0/0

0/0
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-- process 1: implements positive edge-triggered 

-- flipflop with asynchronous reset

state_register: process (CLK, RESET)

begin

 if (RESET = '1') then

  state <= A;

 elsif (CLK'event and CLK = '1') then

  state <= next_state;

 end if;

end process; 

-- process 2: implement output as function 

-- of input X and state

output_function: process (X, state)

begin

 case state is

  when A => Z <= '0';

  when B => Z <= '0'; 

  when C => Z <= '0'; 

  when D => if X = '1' then Z <= ‘1';

            else Z <= ‘0';

            end if;

  end case;

end process;

1/0

0/0

0/0

1/1

A B
1/0

C
1/0

D
0/0

0/0

-- process 3: next state-function implemented 

-- as a function of input X and state

next_state_function: process (X, state)

begin

 case state is   

   when A =>

     if X = '1' then next_state <= B;

     else next_state <= A;

     end if;

   when B =>

     if X = '1' then next_state <= C;

     else next_state <= A;

     end if;

   when C => 

     if X = '1' then next_state <= C;

     else next_state <= D;

     end if;

   when D => 

     if X = '1' then next_state <= B;

     else next_state <= A;

     end if;

 end case;

end process;

end architecture;

  

1/0

0/0

0/0

1/1

A B
1/0

C
1/0

D
0/0

0/0
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Summary

▪ Combinational circuits and regular sequential 

circuits are somewhat easier to describe in 

VHDL.

▪ Manual design of Finite State Machines 

becomes difficult for complex circuits. 

Automated tools come in handy in this case.

Appendix A: VHDL Delay Models

• Delay is created by scheduling a signal 

assignment for a future time

• Delay in a VHDL cycle can be of several 

types:
•  Inertial

•  Transport

•  Delta
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Inertial Delay

•  Default delay type

•  Allows for user specified delay

•  Absorbs pulses of shorter duration than the specified delay

Transport Delay

•  Must be explicitly specified by user

•  Allows for user specified delay

•  Passes all input transitions with delay
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Delta Delay

▪ Delta delay needed to provide support for 

concurrent operations with zero delay
• The order of execution for components with zero delay is not 

clear

▪ Scheduling of zero delay devices requires the 

delta delay
• A delta delay is necessary if no other delay is specified

• A delta delay does not advance simulator time or real/wall 

clock time

• One delta delay is an infinitesimal amount of time

• The delta is a scheduling device to ensure repeatability (or 

determinism)

Example – Delta Delay
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