
1

EECE-4740/5740 Advanced VHDL and FPGA Design

Lecture 3

Sequential Circuits II

Cristinel Ababei

Marquette University

Department of Electrical and Computer Engineering

Overview

▪ Sequential circuits

• Finite State Machines (continued)

▪ More on sequential statements

• IF-THEN-ELSE Statement

• CASE Statement

• LOOP Statement

• WAIT Statement

• ASSERT Statement

1

2

2

VHDL code using 3 processes: sequential recognizer

library ieee;

use ieee.std_logic_1164.all;

entity seq_rec_MEALY is

 port (CLK, RESET, X: in std_logic;

 Z: out std_logic);

end seq_rec;

architecture process_3 of seq_rec_MEALY is

 type state_type is (A, B, C, D);

 signal state, next_state: state_type;

begin

1/0

0/0

0/0

1/1

A B
1/0

C
1/0

D
0/0

0/0

-- process 1: implements positive edge-triggered

-- flipflop with asynchronous reset

state_register: process (CLK, RESET)

begin

 if (RESET = '1') then

 state <= A;

 elsif (CLK'event and CLK = '1') then

 state <= next_state;

 end if;

end process;

-- process 2: implement output as function

-- of input X and state

output_function: process (X, state)

begin

 case state is

 when A => Z <= '0';

 when B => Z <= '0';

 when C => Z <= '0';

 when D => if X = '1' then Z <= ‘1';

 else Z <= ‘0';

 end if;

 end case;

end process;

1/0

0/0

0/0

1/1

A B
1/0

C
1/0

D
0/0

0/0

3

4

3

-- process 3: next state-function implemented

-- as a function of input X and state

next_state_function: process (X, state)

begin

 case state is

 when A =>

 if X = '1' then next_state <= B;

 else next_state <= A;

 end if;

 when B =>

 if X = '1' then next_state <= C;

 else next_state <= A;

 end if;

 when C =>

 if X = '1' then next_state <= C;

 else next_state <= D;

 end if;

 when D =>

 if X = '1' then next_state <= B;

 else next_state <= A;

 end if;

 end case;

end process;

end architecture;

1/0

0/0

0/0

1/1

A B
1/0

C
1/0

D
0/0

0/0

VHDL code using 2 processes: combine processes 2 & 3

Logic

Memory

state

next_state

X Z

Process 1

Process 2

Process 3

Logic

Memory

state

next_state

X Z

Process 1

NEW PROCESS 2

5

6

4

-- NEW PROCESS 2: Z and next_state implemented

-- as functions of input X and state

X_and_next_state_functions: process (X, state)

begin

 case state is

 when A =>

 Z <= '0';

 if X = '1' then next_state <= B;

 else next_state <= A;

 end if;

 when B =>

 Z <= '0';

 if X = '1' then next_state <= C;

 else next_state <= A;

 end if;

 when C =>

 Z <= '0';

 if X = '1' then next_state <= C;

 else next_state <= D;

 end if;

 when D =>

 if X = '1' then Z <= ‘1'; next_state <= B;

 else Z <= ‘0'; next_state <= A;

 end if;

 end case;

end process;

1/0

0/0

0/0

1/1

A B
1/0

C
1/0

D
0/0

0/0

Overview

▪ Sequential circuits

• Finite State Machines

▪ More on sequential statements

1. IF-THEN-ELSE Statement

2. CASE Statement

3. LOOP Statement

4. WAIT Statement

5. ASSERT Statement

7

8

5

1. IF Statement

▪ Condition is a boolean
expression

▪ Optional elsif sequence

• Conditions may overlap

• priority

▪ Optional else path

• executed, if all conditions
evaluate to false

if CONDITION then

 -- sequential statements

end if;

if CONDITION then

 -- sequential statements

else

 -- sequential statements

end if;

if CONDITION then

 -- sequential statements

elsif CONDITION then

 -- sequential statements

 · · ·

else

 -- sequential statements

end if;

IF (clock’event and clock = 1) THEN

 Q <= D AFTER 5 ns;

END IF;

Write VHDL IF-THEN-ELSE code to model a D Flip-flop

(input and output D and Q, respectively)

Example 1

9

10

6

ENTITY clocked_mux IS

 PORT (inputs : IN BIT_VECTOR (0 to 3);

 sel : IN BIT_VECTOR (0 to 1);

 clk : IN BIT;

 output : OUT BIT);

END clocked_mux;

ARCHITECTURE example OF clocked_mux IS

BEGIN

 PROCESS (clk)

 VARIABLE temp : BIT;

 BEGIN

 IF (clk = ‘1’) THEN

 IF sel = “00” THEN

 temp := inputs (0)

 ELSIF sel = “01” THEN

 temp := inputs(1)

 ELSIF sel = “10” THEN

 temp := inputs (2)

 ELSE

 temp := inputs(3)

 END IF;

 output <= temp AFTER 5 ns;

 END IF;

 END PROCESS;

END example;

Example 2:

Clocked 4-to-1 MUX

Example 3

architecture EX1 of IFSTMT is

begin

 process (A, B, C, X)

 begin

 Z <= A;

 if (X = "1111") then

 Z <= B;

 elsif (X > "1000") then

 Z <= C;

 end if;

 end process;

end EX1;

=

entity IFSTMT is

 port (A, B, C, X : in bit_vector (3 downto 0);

 Z : out bit_vector (3 downto 0));

end IFSTMT;

architecture EX2 of IFSTMT is

begin

 process (A, B, C, X)

 begin

 if (X = "1111") then

 Z <= B;

 elsif (X > "1000") then

 Z <= C;

 else

 Z <= A;

 end if;

 end process;

end EX2;

11

12

7

2. Case Statement

CASE expression IS

 WHEN constant_value => sequential statements

 WHEN constant_value => sequential statements

 WHEN others => sequential statements

END CASE;

▪ The keyword WHEN is used to identify constant values that the

expression might match. The expression evaluates a choice,
and then the associated statements will be executed.

▪ The CASE statement will exit when all statements associated

with the first matching constant value are executed.

Example 1

CASE vect IS

 WHEN “00” => int := 0;

 WHEN “01” => int := 1;

 WHEN “10” => int := 2;

 WHEN “11” => int := 3;

END CASE;

▪ vect is a two element bit-vector. By evaluating vect and
the matching WHEN value or choice causes the variable

int to be assigned the matching integer value.

13

14

8

Example 2: Clocked 4-to-1 MUX

ENTITY clocked_mux IS

 PORT (inputs : IN BIT_VECTOR (0 to 3);

 sel : IN BIT_VECTOR (0 to 1);

 clk : IN BIT;

 output : OUT BIT);

END clocked_mux;

ARCHITECTURE behave OF clocked_mux IS

 BEGIN

 PROCESS (clk)

 VARIABLE temp : BIT;

 BEGIN

 CASE clk IS

 WHEN ‘1’ =>

 CASE sel IS

 WHEN “00” => temp := inputs(0);

 WHEN “01” => temp := inputs(1);

 WHEN “10” => temp := inputs(2);

 WHEN “11” => temp := inputs(3);

 END CASE;

 output <= temp AFTER 5 ns;

 WHEN OTHERS => NULL;

 END CASE;

 END PROCESS;

 END behave;

Example 3

entity CASE_STATEMENT is

 port (A, B, C, X : in integer range 0 to 15;

 Z : out integer range 0 to 15;

end CASE_STATEMENT;

architecture EXAMPLE of CASE_STATEMENT is

begin

 process (A, B, C, X)

 begin

 case X is

 when 0 =>

 Z <= A;

 when 7 | 9 =>

 Z <= B;

 when 1 to 5 =>

 Z <= C;

 when others =>

 Z <= 0;

 end case;

 end process;

end EXAMPLE;

15

16

9

3. Loop Statement

▪ The LOOP statement provides a mechanism to repeatedly
execute a sequence of statements. VHDL provides two
types of loop statements:

• FOR LOOP

• WHILE LOOP

FOR LOOP Statement

▪ FOR LOOP syntax:

 [loop_label :]

 FOR variable_name IN range LOOP

 sequential_statements

 END LOOP [loop_label];

▪ The sequential_statements within the loop will be
repeatedly executed within the range specified.

17

18

10

FOR i IN 0 to 3 LOOP

 IF vect(i) = ‘1’ THEN

 value := value + 2**i;

 ENDIF;

END LOOP;

▪ After the fourth pass, the loop range will be exceeded and the loop will
terminate.

▪ A feature of VHDL: unlike most programming languages, the range
variable i was not declared. Any range variable used within the FOR
construct does not have to be declared. The same range identifier can
be used repeatedly from one loop statement to the next.

Example

WHILE LOOP Statement

▪ WHILE LOOP Syntax:

 [loop_label :]

 WHILE boolean_expression LOOP

 sequential_statements

 END LOOP [loop_label];

▪ The boolean_expression condition is evaluated, and if it

is true the sequential_statements within the loop statement

are evaluated until the condition is no longer true.

19

20

11

▪ NEXT and EXIT statements can be used

inside the loop statement

• NEXT: terminate a loop iteration

• EXIT: completely terminate the loop statement

NEXT & EXIT Loop Termination Statements

4. Sensitivity List vs. Wait Statement

▪ The process statement contains only one sensitivity list. A
process with a sensitivity list can only be triggered by an
event on a signal in the list.

▪ Once triggered, the process will sequentially execute all of
statements in the statement region and then suspend until
another event is detected on those signals.

▪ If multiple signals are included in the sensitivity list, any one
of those signals in the list can trigger the process.
Therefore, the use of sensitivity list in a process is fairly
limited.

• To provide greater flexibility for the control of execution of a process,
a WAIT statement can be used.

21

22

12

Wait Statement

The WAIT statement provides the user with more options

than the process sensitivity list.

Advantage:

It can be placed anywhere within the process body.

With the process sensitivity list the process suspends

at the end of the process.

With the WAIT statement, the suspension occurs

where a WAIT statement is encountered.

There is no limitation to the number of WAIT

statements within a process.

 WAIT statements are more flexible.

Wait Statement

▪ WAIT statements stop the process execution.

▪ Four types of wait statements:
• wait on signal_list; -- wait for a signal event
 WAIT ON clock, clear, reset, D;

• wait until condition; -- wait for true condition (requires

an event)
WAIT UNTIL (clock = ‘1’);

WAIT UNTIL (clock =‘1’) or (clear = ‘0’);

• wait for specific_time; -- wait for a specific time
WAIT FOR 10ns;

• wait; -- indefinite (process is never reactivated)

▪ Wait statements must not be used in processes

with sensitivity list

23

24

13

Example

WAIT ON clock UNTIL (clear='0') FOR 10 ns;

▪ This is a combination of three types of WAIT statements. In
this example, the wait statement will suspend the process
and resume if:

• Simulation time has advanced 10 ns or

• There is an event on clock and

 The Boolean expression clear = 0 is true

PROCESS (clk)

BEGIN

 clk <= NOT (clk) AFTER 50ns;

END PROCESS;

PROCESS

BEGIN

 clk <= NOT (clk) AFTER 50ns;

 WAIT ON clk;

END PROCESS;

Sensitivity List & Wait Statement

A process with sensitivity is functionally equivalent to a process

statement with a WAIT statement as the last statement within

the process.

If a process does not have a sensitivity list and does

not have a WAIT statement contained within it, the

process will loop forever during initialization.

This is important to remember!

25

26

14

Example: D Flip-Flop Model

architecture BEH_1 of FF is

begin

 process

 begin

 wait on CLK;

 if (CLK='1') then

 Q <= D;

 end if;

 end process;

end BEH_1;

architecture BEH_2 of FF is

begin

 process

 begin

 wait until CLK='1';

 Q <= D;

 end process;

end BEH_2;

=

entity FF is

 port (D, CLK : in bit;

 Q : out bit);

end FF;

Example: Stimuli Generation in Testbenches

STIMULUS: process

begin

 SEL <= `0`;

 BUS_B <= "0000";

 BUS_A <= "1111";

 wait for 10 ns;

 SEL <= `1`;

 wait for 10 ns;

 SEL <= `0`;

 wait for 10 ns;

 wait;

end process STIMULUS;

▪ Via 'wait for' construct it

is very easy to generate
simple input patterns for
design verification
purposes.

▪ Wait for constructs are
excellent tool for
describing timing
specifications.

27

28

15

WAIT Statements and Behavioral Modeling

▪ It is easy to implement a bus protocol for

simulation.

▪ This behavioral modeling can only be used for

simulation purposes as it is definitely not

synthesizable!

READ_CPU : process

begin

 wait until CPU_DATA_VALID = `1`;

 CPU_DATA_READ <= `1`;

 wait for 20 ns;

 LOCAL_BUFFER <= CPU_DATA;

 wait for 10 ns;

 CPU_DATA_READ <= `0`;

end process READ_CPU;

5. Assertion Statement

▪ Check that expected conditions are met within the

model

▪ Both concurrent and sequential statement, can be

included anywhere in a process body

▪ [label:] ASSERT boolean_expression

 [REPORT expression]

 [SEVERITY severity_level];

▪ Severity_level: predefined enumeration type

• TYPE severity_level IS (note, warning, error, failure)

29

30

16

Example

assert (last_position-first_position + 1) =

number_of_entries

report “inconsistency in buffer model”

severity failure;

▪ Both report and severity clauses are

optional

• Default report string is: “Assertion violation”

• Default severity level is: error

Concurrent Assertion Statement Example

architecture functional of S_R_flipflop is

begin

 q<=‘1’ when s=‘1’ else

 ‘0’ when r=‘1’;

 q_n<=‘0’ when s=‘1’ else

 ‘1’ when r=‘1’;

 check: assert not (s=‘1’ and r=‘1’)

 report “Incorrect use of S_R_flip_flop:

 s and r both ‘1’”;

end architecture functional;

31

32

17

Summary

▪ FSM description with two processes is the most

popular

▪ Wait statements offer more flexibility; very useful

to construct testbenches

▪ Assert statement useful for debugging and to

construct testbenches

▪ Wait and Assert statements cannot be used in

code you want to synthesize and deploy on

FPGA

33

	Slide 1
	Slide 2: Overview
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

