EECE-4740/5740 Advanced VHDL and FPGA Design
Lecture 4

FSM, ASM, FSMD, ASMD

Cristinel Ababei
Dept. of Electrical and Computer Engr.
Marquette University

Overview

Finite State Machine (FSM) Representations:

1. State Graphs

2. Algorithmic State Machine (ASM) Charts
Finite State Machines with Datapath (FSMD)
Algorithmic State Machine with Datapath (ASMD)

Examples
= Example 1 — period counter
= Example 2 — division circuit
= Example 3 — binary-2-BCD converter
= Example 4 — low-frequency counter
= Example 5 — multiplier

FSM — general form

= In practice, main application of an FSM is to act as
controller of a large digital system

= |t examines external commands and status and activates
proper control signals to control operation of a data path
(composed of regular sequential and combinational
components)

Mealy Mealy
output ——
: output
r logic
next-state d q state_reg
i logie tate_next state -
input state_ne
>register Moore Moore
output —— output
clk logic

State Graph €-> ASM Chart

= State graph or state diagram:
® Nodes: unique states of the FSM
® Transitional arcs: labeled with the condition that causes the
transition
= Algorithmic State Machine (ASM) chart is an alternative
representation
® Composed of a network of ASM blocks

® ASM block:
= State box: represents a state in the FSM
= Optional network of decision boxes and conditional output boxes

® More descriptive for applications with complex transition
conditions and actions!

= A state diagram can be converted to an ASM chart and
vice-versa

ASM Charts

= Algorithmic State Machine (ASM) Chart is a popular
high-level flowchart-like graphical model (or notation)
to specify the (hardware) algorithms in digital
systems.

= Major differences from flowcharts are:

< uses 3 types of boxes: state box (similar to operation box),
decision box, and conditional box

< contains exact (or precise) timing information; flowcharts
impose a relative timing order for the operations.
® From the ASM chart it is possible to obtain
< the control
< the architecture (data processor)

Components of ASM Charts

" The state box is rectangular in shape. It has
at most one entry point and one exit point and
Is used to specify one or more operations
which could be simultaneously completed in
one clock cycle.

l binary
state

code

one or more
operations

!

Components of ASM Charts

= The decision box is diamond in shape. It has
one entry point but multiple exit points and is
used to specify a number of alternative paths

that can be followed.
deciding
factors

deciding
factors

Components of ASM Charts

® The conditional box is represented by a
rectangle with rounded corners. It always
follows a decision box and contains one or
more conditional operations that are only
invoked when the path containing the
conditional box is selected by the decision box.

conditional
operations

State Graph €-> ASM Chart

mo: Moore output
me: Mealy ouput

lagic expression / me <= value

State of State Graph

logic expression | me <= value

ASM Block
/— state entry

|— siate box
slate /
name

Maore
output

/ decision box

T Boolean E
condition | conditional
/ output box

Mealy output

l _ exittoother ASM ' %\ exitto other ASM
block

block

Easier to write VHDL!

10

VHDL code

library ieee;
use ieee.std_logic_1164.all;

entity fsm_eg is
port(
clk, reset: in std logic;
a, b: in std logic;
y0, yl: out std_logic
)

end £ sm_eg;

architecture two_seg arch of fsm eg is
type eg_state_type is (s0, sl, s2);
signal state_reg, state_next: eg_state_type;

begin

-- state register
process (clk, reset)
begin
if (reset='l') then
state reg <= s0;
elsif (clk'event and clk='l') then
state_reg <= state_next;
end if;
end process;

11

VHDL code

-- next-state/output logic
process (state_reg,a,b)

begin
state_next <= state_reg; -- default back to same
y0 <= '0'; -- default 0
yl <= '0'; -- default 0

case state_reg is
when s0 =>
yl <= '1";
if a='1l' then
if b='1"' then
state next <= s2;

y0 <= '1';
else
state_next <= sl;
end if;
-- no else branch
end if;
when sl =>
yl <= "'1";

if (a='1l') then
state_next <= s0;
-- no else branch
end if;
when s2 =>
state_next <= s0;
end case;
end process;
end two_seg_arch;

state

12

Example: Rising-edge detector

Generates a short,
one-clock-cycle pulse
(called a tick) when
input signal changes
from ‘0’ to ‘1’

Here: Mealy machine

Assignment: Moore
machine

See more examples

in Ch.5 of P.Chu’s
book (e.qg.,
debouncing circuit)

{2) State diagram

(b) ASM chart

13

VHDL code

library ieee;
use ieee.std_logic_1164.all;

entity edge detect is
port (
clk, reset: in std logic;
level: in std_logic;
tick: out std logic
)i
end edge_detect;

architecture MEALY ARCHITECTURE of edge_detect is

type state type is (SO, S1);
signal state_current, state_next : state_type;

begin

-- state register; process #1
process (clk , reset)
begin
if (reset = 'l') then
state_current <= S0;
elsif (clk' event and clk = 'l') then
state_current <= state_next;
end if;
end process;

14

VHDL code

-- next state and output logic; process #2
process (state_current, level)
begin
state_next <= state_current;
tick <= '0';
case state_current is
when S0 =>
if level = 'l' then
state_next <= S1;
tick <= '1';

end if;
when S1 =>
if level = '0' then
state_next <= S0;
end if;

end case;
end process;

end MEALY ARCHITECTURE;

15

Overview

Finite State Machine (FSM) Representations:
1. State Graphs

2. Algorithmic State Machine (ASM) Charts
Finite State Machines with Datapath (FSMD)

Examples

= Example 1 — period counter

= Example 2 — division circuit

= Example 3 — binary-2-BCD converter
= Example 4 — low-frequency counter

= Example 5 — multiplier

Algorithmic State Machine with Datapath (ASMD)

16

Finite State Machine with Data-path (FSMD):
Enabler of RT design methodology

= FSMD = FSM +
Regular Sequential Circuits +
Combinational Circuits

= The FSM is called control-path (control logic);
the rest is called data-path

= FSMD used to implement systems described
by register transfer (RT) methodology

17

Conceptual block diagram of FSMD

= Datapath - performs data transfer and processing operations
= Control Unit - Determines the enabling and sequencing of the

operations Describe properties of
/ the state of the datapath
_Status signals
Control Control Control signals Datapath
inputs unit p
., Data
outputs
Control Data
outputs inputs
= The control unit receives: = The control unit sends:
¢ External control inputs ® Control signals
¢ Status signals ¢ Control outputs

18

Block diagram of FSMD (detailed)

data path
) dat
a
. " o dal q oulput
routing : i routing l ta
data - network functicralunis natwork > registers :
input
internal status T control signal
|_‘ d —1—._
next-state stateq output ; extemal
A logic > register logie 3 status
command - |— :
control path

RT Design Methodology

RT operations are specified as data manipulation and
transfer among a collection of registers

A circuit based on RT methodology specifies which RT
operations should be executed in each step

RT operations are done in a clock-by-clock basis; so,
timing is similar to a state transition of a FSM

Hence, FSM is natural choice to specify the
sequencing of an RT algorithm

Extend ASM chart to incorporate RT operations
and call it ASMD (ASM with datapath) chart

RT Operations (8 slides; can be skipped)

Register Transfer Operations - the movement and
processing of data stored in registers
Three basic components:

® A set of registers (operands)

® Transfer operations

¢ Control of operations

Elementary operations - called microoperations

® load, count, shift, add, bitwise "OR", etc.

Notation: ldest < f(rsrcl’ rsrcz""’rsrcn)

21

Register Notation

Letters and numbers - register (e.g. R2, PC, IR)
Parentheses () — range of register bits (e.g. R1(1), PC(7:0),

AR(L))
[R] (76543210 |

15 8 7 0 15 0
| PC(H) | PC(L) | | R2 |

Arrow («) — data transfer (ex. R1 « R2, PC(L) <« RO)

Brackets [] — Specifies a memory address (ex. RO « M[AR],

R3 « M[PC])
Comma — separates parallel operations

22

11

Conditional Transfer

Kl \I/
Load
R1 R2

= If (K, =1) then (R2 < R1)
& K (R2 < R1) 2 4
where K, is a control Clock

expression specifying a
P PECING 2 ok LT 1T

conditional execution of

the microoperation.
— 1 L

Trransfer Occurs Here 1‘

No Transfers Occur Here

23

Microoperations

= Logical groupings:
¢ Transfer - move data from one set of registers to another
¢ Arithmetic - perform arithmetic on data in registers
® Logic - manipulate data or use bitwise logical operations
¢ Shift - shift data in registers

Arithmetic operations Logical operations
+ Addition v Logical OR
— Subtraction A Logical AND
* Multiplication @ Logical Exclusive OR
/ Division ~ Not
24

12

Example Microoperations

R1<~ R1 + R2

¢ Add the content of R1 to the content of R2 and place the result

in R1.
PC « R1*R6

R1 « R1eR2

= (K1+K2): R1< R1vR3

¢ On condition K1 OR K2, the content of R1 is Logic bitwise
ORed with the content of R3 and the result placed in R1.

® NOTE: "+"(asin K, + K,) means “OR.” In R1 « R1 + R2, +

means “plus”.

25
Arithmetic Microoperations
Symbolic Designation| Description
RO« R1+R2 Addition
RO« R1 Ones Complement
RO«<R1+1 Two's Complement
RO« R2+ R1+1 |R2minusR1(2's Comp)
R1I<R1+1 Increment (count up)
R1«<R1-1 Decrement (count down)
= Any register may be specified for source 1, source 2,
or destination.
= These simple microoperations operate on the whole
word
26

13

Logical Microoperations

Symbolic Description
Designation
RO « R1 Bitwise NOT

RO < R1 v R2 |Bitwise OR (sets bits)

RO <~ R1 AR2 |Bitwise AND (clears bits)

RO <~ R1 © R2 |Bitwise EXOR (complements bits)

27

Shift Microoperations

* Let R2 =11001001

Symbolic Description R1 content
Designation
R1 <« sl R2 Shift Left 10010010
R1 «srR2 Shift Right 01100100

= Note: These shifts "zero fill". Sometimes a separate
flip-flop is used to provide the data shifted in, or to
“catch” the data shifted out.

= Other shifts are possible (rotates, arithmetic)

28

Algorithmic State Machine with Data-path (ASMD)

= Extend ASM chart to incorporate RT operations -
ASMD (ASM with datapath) chart

Block diagram: implementation of RT operations
ASMD segment (likely synthesized by CAD tool for you or

50 directly specified as structural description)
Mg
a4
Me—ri+2
}] |
52 9
r1_reg
Me—rizgc?
53 l q
state_reg 2.reg
M+—r
clk

29

Location of RT operation inside ASM block

Block diagram: implementation of RT operations
ASM block (likely synthesized by CAD tool for you or

directly specified as structural description)

ri_reg
: z >
Me—r-1 H L4
-
Q
0
: d q
+ 12_reg
12 = 1240 12— 2+2
= >
.
.
l .

state_reg

30

15

Decision Box with a Register

= RT operation in an ASMD chart is controlled by an
embedded clock signal

= Destination register is updated when the machine exits
the current ASMD block, but not within the block!

= Example: r < r—1 means:
" r_next<=r_reg-1;
= r_reg <=r_next at the rising edge of the clock (when
machine exits current block)

31

Example of ASMD description

= Fibonacci number circuit
= Page 140 in Textbook

= A sequence of integers
= fib(i) =
0,ifi=0
1,ifi=1
fib(i-1) + fib(i-2), if i > 1

32

16

ASMD chart

>

33

library ieee;
use ieee.std_logic_1164.all;

use ieee.numeric_std.all; VH D L C 0 d e

entity fib is
port(
clk, reset: in std_logic;
start: in std_logic;
i: in std logic vector (4 downto 0);
ready, done_tick: out std_logic;
£: out std_logic_vector (19 downto 0)
)i
end fib;

architecture arch of fib is
type state_type is (idle,op,done);
signal state reg, state_next: state_type;
signal t0_reg, t0_next, tl_reg, tl_next: unsigned(l9 downto 0);
signal n_reg, n_next: unsigned(4 downto 0);

begin

-- fsmd state and data registers
process (clk, reset)
begin
if reset='l' then
state_reg <= idle;
t0_reg <= (others=>'0");
tl_reg <= (others=>'0');
n_reg <= (others=>'0");
elsif (clk'event and clk='l') then
state_reg <= state_next;
t0_reg <= t0_next;
tl_reg <= tl_next;
n_reg <= n_next;
end if;
end process;

34

17

-- fsmd next-state logic
process (state_reg,n_reg,t0_reg,tl_reg,start,i,n_next)
begin
ready <='0";
done_tick <= '0';
state_next <= state_reg;
t0_next <= t0_reg;
tl_next <= tl_reg;
n_next <= n_reg;
case state_reg is
when idle =>
ready <= '1';
if start='l' then
t0_next <= (others=>'0"');
tl_next <= (0=>'l', others=>'0');
n_next <= unsigned(i);
state_next <= op;
end if;
when op =>
if n_reg=0 then
tl_next <= (others=>'0"');
state_next <= done;
elsif n reg=1 then
state_next <= done;
else
tl_next <= tl_reg + t0_reg;
t0_next <= tl_reg;
n_next <= n_reg - 1;
end if;
when done =>
done_tick <= '1';
state_next <= idle;
end case;
end process;

-- output
£ <= std_logic_vector(tl_reg);

end arch;
35
Overview
= Finite State Machine (FSM) Representations:
1. State Graphs
2. Algorithmic State Machine (ASM) Charts
= Finite State Machines with Datapath (FSMD)
= Algorithmic State Machine with Datapath (ASMD)
= Examples
= Example 1 — period counter
= Example 2 — division circuit
= Example 3 — binary-2-BCD converter
= Example 4 — low-frequency counter
= Example 5 — multiplier
36

18

Example 1: Period Counter
= Measure the period of a periodic input waveform
= Solution:
= Count the number of clock cycles between two rising edges of
the input signal
= Use arising-edge detection circuit (discussed earlier)
= Frequency of clock signal is known - easy to find the period
of input signal: N*1/f¢ ¢
= Assume: T¢ = (e k) =20 ns
= Register t counts for 50,000 clock cycles from 0 to 49,999
then wraps around; it takes 1ms to circulate through 50,000
cycles
= Register p counts in terms of milliseconds
37
ASMD chart
T e ¢
ready <='1 >
T equnt Ty
S -
BEED ‘
e *
i waite !
| |
| ' ppet tepl
—— | &Y
T i :
38

19

VHDL code

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity period counter is
port(
clk, reset: in std logic;
start, si: in std logic;
ready, done_tick: out std_logic;
prd: out std_logic_vector (9 downto 0)
);

end period counter;
architecture arch of period counter is

constant CLK MS COUNT: integer := 50000; -- 1 ms tick

type state_type is (idle, waite, count, done);

signal state reg, state_next: state_type;

signal t _reg, t next: unsigned(1l5 downto 0); -- up to 50000
signal p_reg, p_next: unsigned(9 downto 0); -- up to 1 sec
signal delay reg: std_logic;

signal edge: std_logic;

39

begin

-- state and data register
process (clk,reset)
begin
if reset='l' then
state_reg <= idle;
t_reg <= (others=>'0");
p_reg <= (others=>'0");
delay reg <= '0';
elsif (clk'event and clk='l') then
state_reg <= state_next;
t reg <= t next;
p_reg <= p_next;
delay reg <= si;
end if;
end process;

-- edge detection circuit
edge <= (not delay reg) and si;

40

20

-- FSMD next-state logic/DATAPATH operations
process (start,edge,state_reg,t reg,t next,p_reg)
begin
ready <= '0';
done_tick <= '0';
state_next <= state_reg;
p_next <= p_reg;
t _next <= t_reg;
case state_reg is
when idle =>
ready <= '1';
if (start='l') then
state next <= waite;
end if;
when waite => -- wait for the first edge
if (edge='l') then
state next <= count;
t_next <= (others=>'0");
p_next <= (others=>'0'");
end if;
when count =>
if (edge='l') then -- 2nd edge arrived
state _next <= done;
else -- otherwise count
if t reg = CLK_MS_COUNT-1 then -- 1ms tick
t_next <= (others=>'0");
p_next <= p reg + 1;
else
t_next <= t_reg + 1;
end if;
end if;
when done =>
done_tick <= '1';
state next <= idle;
end case;
end process;
prd <= std_logic_vector (p_reg) ;
end arch;

41
Overview
= Finite State Machine (FSM) Representations:
1. State Graphs
2. Algorithmic State Machine (ASM) Charts
= Finite State Machines with Datapath (FSMD)
= Algorithmic State Machine with Datapath (ASMD)
= Examples
= Example 1 — period counter
= Example 2 —division circuit
= Example 3 — binary-2-BCD converter
= Example 4 — low-frequency counter
= Example 5 — multiplier
42

21

Example 2: Division circuit (more complex)

= Division algorithm of 4-bit unsigned integers:
= (1) Double the dividend width - by appending O’s in
front and align the divisor to leftmost bit of extended
dividend

= (2) If corresponding dividend bits are >= to divisor,
subtract divisor from dividend and make corresponding
quotient bit 1. Otherwise, keep original dividend bits
and make quotient bit O.

= (3) Append one additional dividend bit to previous
result and shift divisor to right 1 position

= (4) Repeat (2) and (3) until all dividend bits are used

43

Division of two 4-bit unsigned integers

12345

/— divispr

! 00110 — quaben
0010 /00001101 — dividend
0000

0001

Goon0

0011
0010

oo1o

Qo010
0001 remaingder

44

22

Sketch of Datapath of Division circuit

7 Divisor placed here initially
d
compare and subtragt | 1T >=d. subtract
motmp| il
L ¥ g_bit ‘17 if
shift left 1hit subtraction done
r = y
Result of last M . .
subtraction th L] Quotient bits in rl
becomes at the end
remainder Extended dividend
inrh initially here

Assignment: draw the ASMD chart with four blocks. See Ch.6 of P.Chu’s book.

45

library ieee;
use ieee.std_logic_1164.all; VH DL COd e

use ieee.numeric_std.all;

entity div is
generic (
W: integer:=8;
CBIT: integer:=4 -- CBIT=log2 (W)+1
)
port (
clk, reset: in std logic;
start: in std logic;
dvsr, dvnd: in std_logic_vector (W-1 downto 0);
ready, done_tick: out std_logic;
quo, rmd: out std_logic_vector(W-1 downto 0)
)

end div;
architecture arch of div is

type state_type is (idle,op,last,done);

signal state_reg, state next: state_type;

signal rh_reg, rh next: unsigned(W-1 downto 0);

signal rl_reg, rl next: std logic_vector (W-1 downto 0);
signal rh_ tmp: unsigned(W-1 downto 0);

signal d_reg, d next: unsigned(W-1 downto 0);

signal n_reg, n_next: unsigned(CBIT-1 downto 0);

signal q bit: std logic;

46

23

begin

-- fsmd state and data registers
process (clk,reset)
begin
if reset='l' then
state_reg <= idle;
rh reg <= (others=>'0")
rl reg <= (others=>'0")
d reg <= (others=>'0");
n_reg <= (others=>'0');
elsif (clk'event and clk='l') then
state_reg <= state_next;
rh_reg <= rh next;
rl reg <= rl next;
d reg <= d_next;
n_reg <= n_next;
end if;
end process;

-- fsmd next-state logic and data path logic
process (state_reg,n reg,rh reg,rl_reg,d reg,
start,dvsr,dvnd,q_bit,rh_tmp,n_next)
begin
ready <='0";
done_tick <= '0';
state_next <= state_reg;
rh next <= rh reg;
rl _next <= rl_reg;
d_next <= d_reg;
n_next <= n_reg;
case state_reg is
when idle =>
ready <= 'l';
if start='1l' then
rh_next <= (others=>'0');

rl next <= dvnd; -- dividend
d_next <= unsigned (dvsr) ; -- divisor
n_next <= to_unsigned(W+1l, CBIT); -- index
state_next <= op;

end if;

when op =>
-- shift rh and rl left
rl next <= rl_reg(W-2 downto 0) & q bit;
rh_next <= rh_tmp (W-2 downto 0) & rl_reg(W-1);
--decrease index
n_next <= n_reg - 1;
if (n_next=1) then
state_next <= last;
end if;
when last => -- last iteration
rl next <= rl_reg(W-2 downto 0) & q_bit;
rh_next <= rh_tmp;
state_next <= done;
when done =>
state_next <= idle;
done_tick <= '1"';
end case;
end process;

-- compare and subtract
process (rh_reg, d_reg)
begin
if rh reg >= d_reg then
rh_tmp <= rh reg - d_reg;

q bit <= '1"';
else
rh_tmp <= rh reg;
q bit <= '0"';
end if;

end process;

-- output

quo <= rl_reg;

rmd <= std_logic_vector (rh_req) ;

end arch;

49

Overview

= Finite State Machine (FSM) Representations:
1. State Graphs
2. Algorithmic State Machine (ASM) Charts
= Finite State Machines with Datapath (FSMD)
= Algorithmic State Machine with Datapath (ASMD)

= Examples
= Example 1 — period counter
= Example 2 — division circuit
= Example 3 — binary-2-BCD converter
= Example 4 — low-frequency counter
= Example 5 — multiplier

50

25

Example 3: Binary-to-BCD converter

A decimal number is represented as sequence of 4-bit BCD digits

Conversion can be processed by a special BCD register, which is
divided into 4-bit groups internally

Shifting a BCD sequence to left requires adjustment of if a BCD digit
is > 9,, after shifting

= Example: If a BCD sequence is “0001 0111” (i.e., 17,,), it should
become “0011 0100” (i.e., 34,,) rather than “0010 1110”

Example:

= Binary: 001000000000

= BCD: 0101 0001 0010

= Decimal: 5 1 2

Read section 6.3.3 in P.Chu’s book for details on algorithm

Assignment: Draw a sketch of the datapath. Draw the ASMD
chart.

51

VHDL code

library ieee;
use ieee.std logic_1164.all;
use ieee.numeric_std.all;

entity bin2bcd is

port (

clk: in std _logic;

reset: in std logic;

start: in std logic;

bin: in std_logic_vector (12 downto 0);

ready, done_tick: out std_logic;

bed3,bed2,bedl ,becd0: out std_logic_vector (3 downto 0)
)

end bin2bcd ;

architecture arch of bin2becd is

type state_type is (idle, op, done);

signal state_reg, state next: state type;

signal p2s_reg, p2s_next: std logic_vector (12 downto 0);

signal n_reg, n_next: unsigned(3 downto 0);

signal bcd3_reg,bcd2_reg,bcdl_reg,bcd0_reg: unsigned(3 downto 0);
signal bcd3_next,bcd2_next,bcdl_next,bcd0 _next: unsigned(3 downto 0);
signal becd3_tmp,bcd2_tmp,bcdl_tmp,bcd0_tmp: unsigned(3 downto 0);

52

26

begin

-- state and data registers
process (clk,reset)
begin
if reset='l' then
state_reg <= idle;
p2s_reg <= (others=>'0");
n_reg <= (others=>'0');
bcd3_reg <= (others=>'0");
bcd2_reg <= (others=>'0");
bcdl_reg <= (others=>'0");
bcd0_reg <= (others=>'0");
elsif (clk'event and clk='l') then
state_reg <= state_next;
pP2s_reg <= p2s_next;
n_reg <= n_next;
bcd3_reg <= bcd3_next;
bcd2_reg <= bcd2_next;
becdl_reg <= bcdl_next;
bcd0_reg <= bcd0_next;
end if;
end process;

53

-- fsmd next-state logic / data path operations
process (state_reg,start,p2s_reg,n_reg,n_next,bin,
bcd0_reg,bedl_reg,bcd2_reg,bed3_reg,
bed0_tmp, bedl_tmp, bed2_tmp, bed3__tmp)
begin

state_next <= state_reg;

ready <= '0'

done_tick 0

P2s_next <= p2s_reg;

bed0_next <= bcd0_reg;

bedl_next <= bedl_reg;

bcd2_next <= bcd2_reg;

bed3 _next <= bed3_reg;

n_next <= n_reg;

case state_reg is

when idle =>
ready <= 'l';
if start='1l' then

state_next <= op;
bcd3_next <= (others=>'0
bcd2_next <= (others=>'0
bedl_next <= (others=>'0
bcd0_next <= (others=>'0"')

")
")
")

n_next <="1101"; -- index
p2s_next <= bin; -- input shift register
state_next <= op;

end if;

when op =>
-- shift in binary bit
p2s_next <= p2s_reg (1l downto 0) & '0';
-- shift 4 BCD digits
bed0_next <= bed0_tmp (2 downto 0) & p2s_reg(12) ;
bedl_next <= bedl_tmp (2 downto 0) & bed0_tmp(3) ;
bcd2_next <= bcd2_tmp (2 downto 0) & bedl_tmp(3);
bed3 next <= bed3_tmp (2 downto 0) & bed2_tmp(3) ;
n_next <= n_reg - 1;
if (n_next=0) then
state next <= done;
end if;
when done =>
state_next <= idle;
done_tick <= '1';
end case;
end process;

54

27

-- data path function units
bcd0_tmp <= bcd0_reg + 3 when bcd0_reg > 4 else

bedl _tmp <= bcdl_reg + 3 when bcdl_reg > 4 else
bcd2_tmp <= bcd2_reg + 3 when bcd2_reg > 4 else

bed3_tmp <= bcd3_reg + 3 when bcd3 reg > 4 else
bed3

reg;

-- output

bcd0 <= std_logic_vector (bcd0_reg) ;
bedl <= std_logic_vector (bcdl_reg) ;
becd2 <= std_logic_vector (bcd2_req) ;
bed3 <= std_logic_vector (bcd3_ reg) ;

end arch;

55

Overview

Finite State Machine (FSM) Representations:

1. State Graphs

2. Algorithmic State Machine (ASM) Charts
Finite State Machines with Datapath (FSMD)
Algorithmic State Machine with Datapath (ASMD)

Examples
= Example 1 — period counter
= Example 2 — division circuit
= Example 3 — binary-2-BCD converter
= Example 4 — low-frequency counter
= Example 5 — multiplier

56

Example 4: Accurate low-frequency counter

= Measure frequency of a periodic input waveform

= One way:
= Count number of input pulses in a fixed amount of time, say 1 sec
= Not working for low-frequency signals; example 2 Hz

= Another way:
1. Measure period of signal
2. Take reciprocal (f=1/T)
3. Convert binary number to BCD format

= Assume: frequency of input signal is between 1-10 Hz (T =
100...1000 ms)

= Structural description:

= |nstantiate a period counter, a division circuit, and a binary-3-BCD
converter

= Create a new ASM chart for master control

57
Block diagram
: |
b atart st s
P J— gy ;‘3“‘-"'““ period_countar
ped
10000001 —— \—l
div_slart Al dynd dver
i brod 4 dane_lick
v ETETE R
i md
bb_start st bin
bab,_dune. tick :"‘—m binZbed
- befd bed? bed! o
\—.l—- et
et
e b2
+ bcdd
58

29

ASM chart of master control

iv_done_tick=1 “>—F——1

T
(prdstari<=1)

count

59

VHDL code

library ieee;
use ieee.std logic_1164.all;
use ieee.numeric_std.all;

entity low_freq_ counter is
port(
clk, reset: in std_logic;
start: in std_logic;
si: in std_logic;
bcd3, bed2, bedl, bed0: out std_logic vector (3 downto 0)
)i

end low_freq_ counter;
architecture arch of low_freq_ counter is

type state type is (idle, count, frg, b2b);

signal state_reg, state_next: state_type;

signal prd: std logic_vector (9 downto 0);

signal dvsr, dvnd, quo: std logic_vector (19 downto 0);

signal prd_start, div_start, b2b_start: std_logic;

signal prd done_tick, div_done_tick, b2b done_ tick: std logic;

begin

60

30

-- component instantiation

-- instantiate period counter

prd_count unit: entity work.period counter

port map (clk=>clk, reset=>reset, start=>prd_start, si=>si,
ready=>open, done_tick=>prd _done_tick, prd=>prd);

-- instantiate division circuit

div_unit: entity work.div

generic map (W=>20, CBIT=>5)

port map (clk=>clk, reset=>reset, start=>div_start,
dvsr=>dvsr, dvnd=>dvnd, quo=>quo, rmd=>open,
ready=>open, done_tick=>div_done_tick) ;

-- instantiate binary-to-BCD convertor

bin2bcd unit: entity work.bin2bcd

port map
(clk=>clk, reset=>reset, start=>b2b start,
bin=>quo (12 downto 0), ready=>open,
done_tick=>b2b done_tick,
becd3=>becd3, bed2=>bcd2, bedl=>bedl, bed0=>bcd0) ;

-- signal width extension
dvnd <= std_logic_vector (to_unsigned (1000000, 20));
dvsr <= "0000000000" & prd;

61

-- Master FSM

process (clk,reset)
begin
if reset='l' then
state_reg <= idle;
elsif (clk'event and clk='l') then
state_reg <= state next;
end if;
end process;

62

31

process (state_reg,start,
prd_done_tick,div_done_tick,b2b_done_tick)
begin
state_next <= state_reg;
prd_start <='0';
div_start <='0';
b2b_start <='0"';
case state_reg is
when idle =>
if start='l' then
state_next <= count;
prd_start <='1"';
end if;
when count =>
if (prd done_tick='l') then
div_start <='1';
state_next <= frq;
end if;
when frq =>
if (div_done_tick='l') then
b2b_start <='1";
state_next <= b2b;
end if;
when b2b =>
if (b2b_done_tick='1l') then
state_next <= idle;
end if;
end case;
end process;

end arch;
63
Overview
= Finite State Machine (FSM) Representations:
1. State Graphs
2. Algorithmic State Machine (ASM) Charts
= Finite State Machines with Datapath (FSMD)
= Algorithmic State Machine with Datapath (ASMD)
= Examples
= Example 1 — period counter
= Example 2 — division circuit
= Example 3 — binary-2-BCD converter
= Example 4 — low-frequency counter
= Example 5 — multiplier
64

32

Example 5: Add-and-shift Multiplier

= Multiplier for unsigned numbers
= See Section 4.8 in C.H.Roth book

Multiplicand —— 1 1 0 1 (13)
Mutliplier =1 0 1 1 (11)
i W O i
/ 101
Partial /1' 00111
products | <_ =0 0 0 0
\ 100111
1101
1 0001311211 (143)
65
Product
- 7 ACC ™
Load 8| 7 6] 5 4 EH 21 1] 0
C sk ; ' o ;
o Ad_ - ! ; |
: L R
t H—/
r Multip] Add multiplicand with most
o | Done Cm 4-Bitadder Significant 4 bits of ACC. Put
LT result back into ACC. Cout into
LSt bit index 8 of ACC.
_T_M Multiplicand
S0
State graph of control
66

33

Summary

= State graphs and ASM charts are graphical models for
FSMs

= ASM charts are somewhat more convenient to write
VHDL code from

» Finite State Machines with Datapath, FSMDs
(particularly, Algorithmic State Machine with Datapath,
ASMD - as a form of FSMD) are great for RT design
methodology

= They are useful when we care about the internal
structure of the circuit

= Try to reuse developed components to implement
larger designs

Credits

= Chapters 5,6 of Pong P. Chu, FPGA
Prototyping by VHDL, 2008

= Chapter 5 from Jr. Charles H. Roth and Lizy K.
John, Digital Systems Design Using VHDL,
2007.

