
1 
 

Lecture 5: More on Testbenches  
 

The objective of this supplemental material is to reinforce the concept of testbenches in VHDL. 

 

1. Introduction 

 

On alternative way to verify the correctness of a VHDL description of a design is to use testbenches.  

A testbench is an enclosing VHDL model. Its name comes from the analogy with a real hardware 

testbench, on which a Device Under Test (DUT) is stimulated with signal generators and observed with 

signal probes. A VHDL testbench consists of an architecture body containing an instance of the 

component to be tested and processes that generate sequences of values on signals connected to the 

component instance. The architecture body may also contain processes that test the component instance 

produces the expected values on its output signals.  

 

During this supplemental lab you will write the VHDL model for a registered ALU using a package, and 

test it using a testbench. Your ALU is capable of performing four operations on two operands as shown 

in Fig.1. The flag output is high (logic '1') whenever there is either an underflow or overflow on the C 

bus. 

 

 
 

 

 

2. Writing the package 

 

As you already learned, a VHDL package is an important way of grouping a collection of related 

declarations that serve a common purpose. Usually, a package is a set of subprograms that provide 

operations on a particular type of data, or they might be just the set of declarations needed to model a 

design. 

The important thing is that they can be collected together into a separate design unit that can be worked 

on independently and reused in different parts of a model or models. 

The following VHDL code describes all the operations needed to implement the four basic operations of 

your simple ALU. Type it using any text editor (or using the VHDL editor of ISE WebPack) and save it 

as alupack.vhd. 

a(3:0) b(3:0) 

ALU 

REGISTER 

flag c(3:0) 

1 4 

clk 

reset 

func(1:0) 

Figure 1 Simple ALU 



2 
 

 
--------------------------------------------- 

library IEEE; 

use IEEE.std_logic_1164.all; 

use IEEE.numeric_std.all; 

--------------------------------------------- 

-- package declarations for procedures and constants 

package addorsub is 

-- set the default bus size 

constant bussize : integer := 4; 

-- set up a type for a bus of size bussize 

subtype stdbus is signed (3 downto 0); 

subtype lrgbus is signed (4 downto 0); 

-- set the integer range for a bus of size bussize + 1 

subtype medint is integer range -32 to 31; 

 

-- extend performs a one bit signed or signed bit extension based 

-- on the value of signex. signex=1 does a signed extension. 

procedure extend (signal inbus : in stdbus; variable outbus : out 

                 lrgbus; signex : in std_logic); 

 

-- usadd performs signed or signed addition of two busses of size 

-- bussize. the result is a signed or signed bus of size bussize  

-- depending on signex (signex = 1 produces a signed result). reportf  

-- indicates if there is an underflow or overflow. 

procedure usadd (signal abus, bbus : in signed(bussize-1 downto 0); 

                 signal result : out signed(bussize-1 downto 0); 

                 signex : in std_logic; 

                 signal reportf : out std_logic); 

 

-- ussub performs signed or signed subtraction (abus - bbus) 

-- of two busses of size bussize (signex=1 causes signed subtraction). 

-- reportf =1 if there is an underflow or overflow. 

procedure ussub (signal abus, bbus : in signed(bussize-1 downto 0); 

                 signal result : out signed(bussize-1 downto 0); 

                 signex : in std_logic; 

                 signal reportf : out std_logic); 

end addorsub; 

 

--------------------------------------------- 

-- package body contains the procedure bodies. 

package body addorsub is 

 

procedure extend (signal inbus : in stdbus; variable outbus : out    

                 lrgbus; signex : in std_logic) is 

begin 

outbus := (signex and inbus (bussize-1)) & inbus(bussize-1 downto 0); 

end; 

 

procedure usadd (signal abus, bbus : in signed(bussize-1 downto 0); 

                 signal result : out signed(bussize-1 downto 0); 

                 signex : in std_logic; 

                 signal reportf : out std_logic) is 

variable tempr : medint; 

 

variable tempa : signed(bussize downto 0); 

variable tempb : signed(bussize downto 0); 



3 
 

begin 

-- sign/unsign extend abus and bbus to a bus of size bussize + 1; 

extend(abus, tempa, signex); 

extend(bbus, tempb, signex); 

--perform signed addition 

tempr := to_integer(tempa)+ to_integer(tempb); 

-- check for overflows dependent on type of addition 

if (signex = ‘0’ and tempr > 15) then 

 --overflow of signed addition 

 reportf <= ‘1’; 

elsif (signex = ‘1’ and (tempr > 7 or tempr < -8)) then 

 -- overflow or underflow of signed addition 

 reportf <= ‘1’; 

else 

 reportf <= ‘0’; 

end if; 

result <= to_signed(tempr, bussize); 

end usadd; 

 

procedure ussub (signal abus, bbus : in signed(bussize-1 downto 0); 

                 signal result : out signed(bussize-1 downto 0); 

                 signex : in std_logic; 

                 signal reportf : out std_logic) is 

variable tempr : medint; 

variable tempa : signed(bussize downto 0); 

variable tempb : signed(bussize downto 0); 

begin 

-- sign/unsign extend abus and bbus to a bus of size bussize+1; 

extend(abus, tempa, signex); 

extend(bbus, tempb, signex); 

-- perform signed addition 

tempr := to_integer(tempa)- to_integer(tempb); 

-- check for overflows dependent on type of addition 

if (signex = ‘0’ and tempr < 0) then 

 reportf <= ‘1’; 

elsif (signex = ‘1’ and (tempr > 7 or tempr < -8)) then 

 -- overflow or underflow of signed addition 

 reportf <= ‘1’; 

else 

 reportf <= ‘0’; 

end if; 

result <= to_signed(tempr, bussize); 

end ussub; 

 

end addorsub; -- end of package body 

--------------------------------------------- 

 

3. Writing the VHDL description of the ALU 

 

The following VHDL code describes the ALU, which uses the functions declared and implemented in the 

package alupack. The ALU should have a register to latch the output. Type it using any text editor and 

save it as alu.vhd. 
--------------------------------------------- 

library IEEE; 

use IEEE.std_logic_1164.all; 

use IEEE.numeric_std.all; 



4 
 

use WORK.addorsub.all; 

--------------------------------------------- 

entity alu is 

 port (a, b : in stdbus; 

 func : in std_logic_vector(1 downto 0); 

 clk, reset : in std_logic; 

 flag : out std_logic; 

 c : out stdbus); 

end alu; 

--------------------------------------------- 

architecture rtl of alu is 

signal intflag : std_logic; 

signal intbus : stdbus; 

begin 

 

regp : process (clk, reset) 

begin 

if (reset = ‘1’) then 

 flag <= ‘0’; 

 c <= “0000”; 

elsif (clk’event and clk = ‘0’) then 

 flag <= intflag; 

 c <= intbus; 

end if; 

end process regp; 

 

alup : process(a, b, func) 

begin 

if func(1) = ‘0’ then 

 usadd(a, b, intbus, func(0), intflag); 

else 

 ussub(a, b, intbus, func(0), intflag); 

end if; 

end process alup; 

 

end rtl; 

--------------------------------------------- 

 

4. Writing the testbench 

 

The following VHDL code represents the testbench. It generates inputs for and monitors the outputs from 

the ALU. The testbench compares the actual outputs with expected outputs and prints out if a test is 

successful or not. Note that you do not need a stimulus file when you work with testbenches; the design 

is stimulated with stimulus generated inside the testbench. 

 

Type the following VHDL code and save it as testbench.vhd. 

 
--------------------------------------------- 

library IEEE; 

use IEEE.std_logic_1164.all; 

use IEEE.numeric_std.all; 

use WORK.addorsub.all; 

--------------------------------------------- 

entity testbench is 

end testbench; 



5 
 

--------------------------------------------- 

architecture test of testbench is 

type table_type1 is array (0 to 5) of signed (3 downto 0); 

type table_type2 is array (0 to 3) of std_logic_vector (1 downto 0); 

constant inputa : signed := “0000”; 

constant inputb : signed := “0000”; 

constant outc : table_type1 := (“0001”, “0011”, “0101”, “0111”, “1001”,“1011”); 

constant outgen : table_type2 := (“00”, “01”, “10”, “11”); 

signal cbus : signed (3 downto 0); 

signal flag : std_logic; 

signal abus : signed (3 downto 0) := “0000”; 

signal bbus : signed (3 downto 0) := “0000”; 

signal clk : std_logic; 

signal reset : std_logic; 

signal sel : std_logic_vector (1 downto 0) := “00”; 

 

component alu 

port (a, b : in stdbus; 

 func : in std_logic_vector(1 downto 0); 

 clk, reset : in std_logic; 

 flag : out std_logic; 

 c : out stdbus); 

end component; 

for alu_inst : alu use entity work.alu(rtl); 

 

begin 

alu_inst : alu port map (abus, bbus, sel, clk, reset, flag, cbus); 

 

clkp : process 

begin 

clk <= ‘1’, ‘0’ after 50 ns; 

wait for 100 ns; 

end process clkp; 

 

rset : process 

begin 

reset <= ‘1’, ‘0’ after 100 ns; 

wait for 1 ms; 

end process rset; 

 

testp : process 

begin 

wait for 100 ns; -- this is needed for reset to finish 

for j in 0 to 1 loop -- test for unsigned & signed add 

 sel <= outgen(j); 

 for i in 0 to 5 loop 

  abus <= inputa + TO_SIGNED(i, 4); 

  bbus <= inputb + TO_SIGNED(i+1, 4); 

  wait for 51 ns; 

  assert (cbus = outc(i)) 

  report “Result is not correct” 

  severity warning; 

  wait for 49 ns; 

 end loop; 

end loop; 

for j in 2 to 3 loop -- test for unsigned & signed sub 

 sel <= outgen(j); 



6 
 

 for i in 0 to 5 loop 

  abus <= inputa + TO_SIGNED(i, 4); 

  bbus <= inputb + TO_SIGNED(i+1, 4); 

  wait for 51 ns; 

  assert (cbus = "1111”) 

  report “Result is not correct” 

  severity warning; 

  wait for 49 ns; 

 end loop; 

end loop; 

assert false 

report “Test Complete” 

severity error; 

end process testp; 

 

end test; 

--------------------------------------------- 

 

Read thoroughly the above files to understand the functionality of the testbench, then: 

 Use Aldec HDL simulator to simulate alu.vhd together with alupack.vhd. Create your own input 

signals (as in lab#1) to stimulate the four basic operations performed by the ALU and verify its 

correctness. 

 Simulate testbench.vhd (together with alu.vhd and alupack.vhd) to verify the ALU. Notice that using 

testbeches saves your time. 

 

5. Lab assignment  

 

You are required to modify the ALU design such that it can be implemented with ISE WebPack and 

verified on the Atlys board. You must add a clock divider to provide a clock frequency of 1 Hz to the 

ALU unit. The clock divider uses as input the 100 MHz signal of the Atlys board. 

Use output c(3:0) to drive LEDs. The LEDs must display either a number between 0-15 for unsigned 

operations, or a number between 0-7 for the signed operations. The output "flag" should drive the left 

most LED. As inputs a(3:0) and b(3:0) use all eight slide-switche. As func(1:0) use the two push-buttons. 

Synthesize and implement this modified ALU and download its bitstream file to the board to configure 

the FPGA. Verify the correct operation. 

 


